
Susanne C Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6962606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	7.8	336
2	Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the water framework directive. Limnologica, 2004, 34, 283-301.	1.5	133
3	The Trophic Index of Macrophytes (TIM)– a New Tool for Indicating the Trophic State of Running Waters. International Review of Hydrobiology, 2003, 88, 49-67.	0.9	130
4	Macrophytes and phytobenthos as indicators of ecological status in German lakes $\hat{a} \in$ " a contribution to the implementation of the water framework directive. Limnologica, 2004, 34, 302-314.	1.5	119
5	The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia, 2011, 665, 143-155.	2.0	78
6	Macrophyte-based assessment of lakes - a contribution to the implementation of the European Water Framework Directive in Germany. International Review of Hydrobiology, 2005, 90, 223-237.	0.9	76
7	Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Science of the Total Environment, 2013, 444, 73-84.	8.0	68
8	Macrophyte trophic indicator values from a European perspective. Limnologica, 2007, 37, 281-289.	1.5	64
9	Establishing expectations for pan-European diatom based ecological status assessments. Ecological Indicators, 2012, 20, 177-186.	6.3	55
10	Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica, 2012, 42, 204-211.	1.5	54
11	The role of charophytes (Charales) in past and present environments: An overview. Aquatic Botany, 2015, 120, 2-6.	1.6	50
12	Effects of flow regime on benthic algae and macroinvertebrates - A comparison between regulated and unregulated rivers. Science of the Total Environment, 2017, 579, 1059-1072.	8.0	50
13	Growth towards light as an adaptation to high light conditions in Chara branches. New Phytologist, 2006, 172, 83-91.	7.3	49
14	Eutrophication impacts littoral biota in Lake Ohrid while water phosphorus concentrations are low. Limnologica, 2014, 44, 90-97.	1.5	39
15	Sediment and Water Nutrient Characteristics in Patches of Submerged Macrophytes in Running Waters. Hydrobiologia, 2004, 527, 195-207.	2.0	35
16	Light acclimation in submerged macrophytes: The roles of plant elongation, pigmentation and branch orientation differ among Chara species. Aquatic Botany, 2015, 120, 121-128.	1.6	32
17	Species differentiation in the genus <i>Chara</i> (Charophyceae): considerable phenotypic plasticity occurs within homogenous genetic groups. European Journal of Phycology, 2016, 51, 282-293.	2.0	32
18	<scp>DNA</scp> barcoding the genus <i>Chara</i> : molecular evidence recovers fewer taxa than the classical morphological approach. Journal of Phycology, 2015, 51, 367-380.	2.3	25

SUSANNE C SCHNEIDER

#	Article	IF	CITATIONS
19	Juncus bulbosus nuisance growth in oligotrophic freshwater ecosystems: Different triggers for the same phenomenon in rivers and lakes?. Aquatic Botany, 2013, 104, 15-24.	1.6	21
20	Differentiation of Chara intermedia and C. baltica compared to C. hispida based on morphology and amplified fragment length polymorphism. Hydrobiologia, 2007, 586, 155-166.	2.0	20
21	Chara baltica Bruzelius 1824 and Chara intermedia A. Braun 1859—Distinct species or habitat specific modifications?. Aquatic Botany, 2010, 93, 195-201.	1.6	19
22	Biodiversity patterns of Arctic diatom assemblages in lakes and streams: Current reference conditions and historical context for biomonitoring. Freshwater Biology, 2022, 67, 116-140.	2.4	18
23	Customs, habits, and traditions: the role of nonscientific factors in the development of ecological assessment methods. Wiley Interdisciplinary Reviews: Water, 2015, 2, 159-165.	6.5	17
24	Ecological correlates of riverine diatom and macroinvertebrate alpha and beta diversity across Arctic Fennoscandia. Freshwater Biology, 2022, 67, 49-63.	2.4	17
25	Littoral eutrophication indicators are more closely related to nearshore land use than to water nutrient concentrations: A critical evaluation of stressor-response relationships. Science of the Total Environment, 2020, 748, 141193.	8.0	15
26	Greener rivers in a changing climate?—Effects of climate and hydrological regime on benthic algal assemblages in pristine streams. Limnologica, 2015, 55, 21-32.	1.5	14
27	Impact of calcium and TOC on biological acidification assessment in Norwegian rivers. Science of the Total Environment, 2011, 409, 1164-1171.	8.0	13
28	Unravelling the effect of flow regime on macroinvertebrates and benthic algae in regulated versus unregulated streams. Ecohydrology, 2018, 11, e1996.	2.4	13
29	Bioconcentration and Intracellular Storage of Hexachlorobenzene in Charophytes and Their Potential Role in Monitoring and Remediation Actions. Environmental Science & Technology, 2012, 46, 12427-12434.	10.0	12
30	Nuisance growth of <i>Juncus bulbosus</i> : the roles of genetics and environmental drivers tested in a largeâ€scale survey. Freshwater Biology, 2013, 58, 114-127.	2.4	12
31	The importance of submerged macrophytes as indicators for the nutrient concentration in a small stream (Rotbach, Bavaria). Limnologica, 2000, 30, 351-358.	1.5	11
32	Physiological acclimation to light in Chara intermedia nodes. Aquatic Botany, 2009, 91, 151-156.	1.6	11
33	Indicating the trophic state of running waters by submersed macrophytes and epilithic diatoms. Limnologica, 2000, 30, 1-8.	1.5	10
34	Genetic and morphological variation in Chara contraria and a taxon morphologically resembling Chara connivens. Botany Letters, 2020, 167, 187-200.	1.4	9
35	Assessment of littoral eutrophication in Lake Ohrid by submerged macrophytes. Biologia (Poland), 2014, 69, 756-764.	1.5	8
36	Recovery of benthic algal assemblages from acidification: how long does it take, and is there a link to eutrophication?. Hydrobiologia, 2018, 805, 33-47.	2.0	8

#	Article	IF	CITATIONS
37	Do benthic algae provide important information over and above that provided by macrophytes and phytoplankton in lake status assessment? – Results from a case study in Norway. Limnologica, 2019, 76, 28-40.	1.5	8
38	Nutrient retention by the littoral vegetation of a large lake: Can Lake Ohrid cope with current and future loading?. Limnology and Oceanography, 2020, 65, 2390-2402.	3.1	7
39	The "Forgotten―Ecology Behind Ecological Status Evaluation: Re-Assessing the Roles of Aquatic Plants and Benthic Algae in Ecosystem Functioning. Progress in Botany Fortschritte Der Botanik, 2016, , 285-304.	0.3	6
40	Effects of flow events and nutrient addition on stream periphyton and macroinvertebrates: an experimental study using flumes. Knowledge and Management of Aquatic Ecosystems, 2017, , 47.	1.1	6
41	Charophytes in warm springs on Svalbard (Spitsbergen): DNA barcoding identifies Chara aspera and Chara canescens with unusual morphological traits. Botany Letters, 2020, 167, 179-186.	1.4	4
42	Morphological and molecular features of a <i>Chara vulgaris</i> population from desert springs on the Sinai Peninsula (Springs of Moses, Egypt). Botany Letters, 2018, 165, 77-89.	1.4	3
43	Relating environmental pressures to littoral biological water quality indicators in Western Balkan lakes: Can we fill the largest gaps?. Science of the Total Environment, 2022, 804, 150160.	8.0	3