Tetsuro Tago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6962511/publications.pdf Version: 2024-02-01

Τετςμρο Τλοο

#	Article	IF	CITATIONS
1	Automated production of [18F]MK-6240 on CFN-MPS200. Applied Radiation and Isotopes, 2021, 168, 109468.	0.7	4
2	Preclinical Evaluation of an ¹⁸ F-Labeled SW-100 Derivative for PET Imaging of Histone Deacetylase 6 in the Brain. ACS Chemical Neuroscience, 2021, 12, 746-755.	1.7	8
3	Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4307-4317.	3.3	6
4	Pharmacokinetic Modeling of (<i>R</i>)-[¹¹ C]verapamil to Measure the P-Glycoprotein Function in Nonhuman Primates. Molecular Pharmaceutics, 2021, 18, 416-428.	2.3	3
5	Radiosynthesis and preliminary evaluation of an ¹⁸ Fâ€labeled tubastatin A analog for PET imaging of histone deacetylase 6. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 85-95.	0.5	4
6	Pharmacokinetic Modeling of [18F]MC225 for Quantification of the P-Glycoprotein Function at the Blood–Brain Barrier in Non-Human Primates with PET. Molecular Pharmaceutics, 2020, 17, 3477-3486.	2.3	14
7	Automated synthesis, preclinical toxicity, and radiation dosimetry of [18F]MC225 for clinical use: a tracer for measuring P-glycoprotein function at the blood-brain barrier. EJNMMI Research, 2020, 10, 84.	1.1	5
8	Characterization of the binding of tau imaging ligands to melanin-containing cells: putative off-target-binding site. Annals of Nuclear Medicine, 2019, 33, 375-382.	1.2	16
9	Correlations of ¹⁸ F-THK5351 PET with Postmortem Burden of Tau and Astrogliosis in Alzheimer Disease. Journal of Nuclear Medicine, 2018, 59, 671-674.	2.8	135
10	Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases. Molecules, 2018, 23, 300.	1.7	24
11	Characteristics of Tau and Its Ligands in PET Imaging. Biomolecules, 2016, 6, 7.	1.8	86
12	¹⁸ F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease. Journal of Nuclear Medicine, 2016, 57, 208-214.	2.8	282
13	Structure–Activity Relationship of 2-Arylquinolines as PET Imaging Tracers for Tau Pathology in Alzheimer Disease. Journal of Nuclear Medicine, 2016, 57, 608-614.	2.8	56
14	Novel ¹⁸ F-Labeled Arylquinoline Derivatives for Noninvasive Imaging of Tau Pathology in Alzheimer Disease. Journal of Nuclear Medicine, 2013, 54, 1420-1427.	2.8	259