Masatsugu Toyota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6962050/publications.pdf

Version: 2024-02-01

35 papers 3,047 citations

331259 21 h-index 395343 33 g-index

41 all docs

41 docs citations

times ranked

41

3892 citing authors

#	Article	IF	CITATIONS
1	Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 2018, 361, 1112-1115.	6.0	624
2	Salt stress-induced Ca ²⁺ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6497-6502.	3.3	558
3	A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science, 2014, 19, 623-630.	4.3	478
4	Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding. Plant Cell, 2017, 29, 1460-1479.	3.1	169
5	The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots. Plant Cell, 2017, 29, 1984-1999.	3.1	143
6	CRK2 and C-terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidopsis. Plant Cell, 2020, 32, 1063-1080.	3.1	115
7	Gravitropism and mechanical signaling in plants. American Journal of Botany, 2013, 100, 111-125.	0.8	103
8	Cytoplasmic Calcium Increases in Response to Changes in the Gravity Vector in Hypocotyls and Petioles of Arabidopsis Seedlings. Plant Physiology, 2008, 146, 505-514.	2.3	101
9	An <i>Arabidopsis</i> i>E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing A. Plant Cell, 2011, 23, 1830-1848.	3.1	87
10	Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants, 2020, 6, 1219-1224.	4.7	67
11	CRK2 Enhances Salt Tolerance by Regulating Callose Deposition in Connection with PLD < i> \hat{l} ± < /i> 1. Plant Physiology, 2019, 180, 2004-2021.	2.3	65
12	Tonoplast-localized Ca ²⁺ pumps regulate Ca ²⁺ signals during pattern-triggered immunity in <i>Arabidopsis thaliana</i> Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18849-18857.	3.3	62
13	Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant Journal, 2013, 76, 648-660.	2.8	51
14	The fast and the furious: rapid long-range signaling in plants. Plant Physiology, 2021, 185, 694-706.	2.3	50
15	Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity. New Phytologist, 2017, 216, 1161-1169.	3.5	43
16	Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana. Nature Communications, 2022, 13, 1216.	5.8	43
17	Mechanical Signaling in the Sensitive Plant Mimosa pudica L Plants, 2020, 9, 587.	1.6	38
18	Analyses of a Gravistimulation-Specific Ca2+ Signature in Arabidopsis using Parabolic Flights Â. Plant Physiology, 2013, 163, 543-554.	2.3	34

#	Article	IF	CITATIONS
19	Using GCaMP3 to Study Ca2+ Signaling in Nicotiana Species. Plant and Cell Physiology, 2017, 58, 1173-1184.	1.5	32
20	Gravity sensing in plant and animal cells. Npj Microgravity, 2021, 7, 2.	1.9	32
21	Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings. Plant Signaling and Behavior, 2008, 3, 521-524.	1.2	26
22	Calcium mobilizations in response to changes in the gravity vector in <i>Arabidopsis</i> Plant Signaling and Behavior, 2014, 9, e29099.	1.2	20
23	Developmental changes in crossover frequency in Arabidopsis. Plant Journal, 2011, 65, 589-599.	2.8	18
24	Wortmannin-induced vacuole fusion enhances amyloplast dynamics in Arabidopsis <i>zigzag1</i> hypocotyls. Journal of Experimental Botany, 2016, 67, 6459-6472.	2.4	18
25	CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. Plant Physiology, 2021, 187, 1690-1703.	2.3	18
26	Live Cell Imaging of Cytoskeletal and Organelle Dynamics in Gravity-Sensing Cells in Plant Gravitropism. Methods in Molecular Biology, 2015, 1309, 57-69.	0.4	12
27	Micromanipulation of amyloplasts with optical tweezers in <i>Arabidopsis</i> stems. Plant Biotechnology, 2020, 37, 405-415.	0.5	8
28	Isolation of New Gravitropic Mutants under Hypergravity Conditions. Frontiers in Plant Science, 2016, 7, 1443.	1.7	7
29	Wide-Field, Real-Time Imaging of Local and Systemic Wound Signals in Arabidopsis . Journal of Visualized Experiments, 2021, , .	0.2	6
30	Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor. Journal of Visualized Experiments, 2017, , .	0.2	5
31	Molecular Mechanisms of Mechanosensing and Mechanotransduction. , 2018, , 375-397.		2
32	Centrifuge Microscopy to Analyze the Sedimentary Movements of Amyloplasts. Bio-protocol, 2014, 4, .	0.2	2
33	SB-1 Long-distance Ca2+ signaling via glutamate receptor channels in plants. Microscopy (Oxford,) Tj ETQq1 1	0.784314	rgBT /Overlo
34	Live-cell imaging of plant gravity sensing by using a vertical-stage confocal microscope and a centrifuge microscope. Plant Morphology, 2012, 24, 23-32.	0.1	0
35	Long-range, Rapid Ca ²⁺ Signal Transduction in Plants. Seibutsu Butsuri, 2022, 62, 56-57.	0.0	0

3