
## Mary C Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961816/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Simultaneous Successive Twinning Captured by Atomic Electron Tomography. ACS Nano, 2022, 16, 588-596.                                                                                                                               | 7.3  | 12        |
| 2  | Chemical and Structural Alterations in the Amorphous Structure of Obsidian due to Nanolites.<br>Microscopy and Microanalysis, 2022, 28, 289-295.                                                                                    | 0.2  | 4         |
| 3  | Orientated Growth of Ultrathin Tellurium by van der Waals Epitaxy. Advanced Materials Interfaces,<br>2022, 9, .                                                                                                                     | 1.9  | 7         |
| 4  | Automated Crystal Orientation Mapping in py4DSTEM using Sparse Correlation Matching. Microscopy and Microanalysis, 2022, 28, 390-403.                                                                                               | 0.2  | 17        |
| 5  | Thermodynamically Driven Synthetic Optimization for Cationâ€Disordered Rock Salt Cathodes.<br>Advanced Energy Materials, 2022, 12, .                                                                                                | 10.2 | 20        |
| 6  | Structural heterogeneity in non-crystalline Te <sub><i>x</i></sub> Se1â^'x thin films. Applied Physics<br>Letters, 2022, 121, 012101.                                                                                               | 1.5  | 1         |
| 7  | Classifying handedness in chiral nanomaterials using label error robust deep learning. Npj<br>Computational Materials, 2022, 8, .                                                                                                   | 3.5  | 3         |
| 8  | 3D Nanotomography of calcium silicate hydrates by transmission electron microscopy. Journal of the<br>American Ceramic Society, 2021, 104, 1852-1862.                                                                               | 1.9  | 9         |
| 9  | Role of element-specific damping in ultrafast, helicity-independent, all-optical switching dynamics in amorphous (Gd,Tb)Co thin films. Physical Review B, 2021, 103, .                                                              | 1.1  | 40        |
| 10 | Understanding Diameter and Length Effects in a Solutionâ€Processable<br>Telluriumâ€Poly(3,4â€Ethylenedioxythiophene) Polystyrene Sulfonate Hybrid Thermoelectric Nanowire<br>Mesh. Advanced Electronic Materials, 2021, 7, 2000904. | 2.6  | 6         |
| 11 | Machine Learning Pipeline for Segmentation and Defect Identification from High-Resolution<br>Transmission Electron Microscopy Data. Microscopy and Microanalysis, 2021, 27, 549-556.                                                | 0.2  | 34        |
| 12 | Phase-contrast imaging of multiply-scattering extended objects at atomic resolution by reconstruction of the scattering matrix. Physical Review Research, 2021, 3, .                                                                | 1.3  | 11        |
| 13 | Decoupling electron and phonon transport in single-nanowire hybrid materials for high-performance thermoelectrics. Science Advances, 2021, 7, .                                                                                     | 4.7  | 30        |
| 14 | A layered nonstoichiometric lepidocrocite-type sodium titanate anode material for sodium-ion batteries. MRS Energy & Sustainability, 2021, 8, 88.                                                                                   | 1.3  | 4         |
| 15 | Tellurium Singleâ€Crystal Arrays by Lowâ€Temperature Evaporation and Crystallization. Advanced<br>Materials, 2021, 33, e2100860.                                                                                                    | 11.1 | 32        |
| 16 | A Fast Algorithm for Scanning Transmission Electron Microscopy Imaging and 4D-STEM Diffraction Simulations. Microscopy and Microanalysis, 2021, 27, 835-848.                                                                        | 0.2  | 11        |
| 17 | Revealing the Phase Separation Behavior of Thermodynamically Immiscible Elements in a Nanoparticle.<br>Nano Letters, 2021, 21, 6684-6689.                                                                                           | 4.5  | 18        |
| 18 | Structural Ordering and Composition of Warner Mountains Obsidian and its Microlites. Microscopy and Microanalysis, 2021, 27, 1850-1852.                                                                                             | 0.2  | 0         |

MARY C SCOTT

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Prismatic 2.0 $\hat{a} \in$ Simulation software for scanning and high resolution transmission electron microscopy (STEM and HRTEM). Micron, 2021, 151, 103141.                                      | 1.1  | 42        |
| 20 | Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films. Applied Physics Letters, 2021, 119, .                                                    | 1.5  | 10        |
| 21 | Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nature<br>Nanotechnology, 2020, 15, 53-58.                                                                        | 15.6 | 153       |
| 22 | Tilted fluctuation electron microscopy. Applied Physics Letters, 2020, 117, .                                                                                                                       | 1.5  | 6         |
| 23 | Evaporated Se <i><sub>x</sub></i> Te <sub>1â€</sub> <i><sub>x</sub></i> Thin Films with Tunable<br>Bandgaps for Shortâ€Wave Infrared Photodetectors. Advanced Materials, 2020, 32, e2001329.        | 11.1 | 49        |
| 24 | Characterization of mechanical degradation in an all-solid-state battery cathode. Journal of<br>Materials Chemistry A, 2020, 8, 17399-17404.                                                        | 5.2  | 100       |
| 25 | Direct Bandgap-like Strong Photoluminescence from Twisted Multilayer MoS <sub>2</sub> Grown on<br>SrTiO <sub>3</sub> . ACS Nano, 2020, 14, 16761-16769.                                             | 7.3  | 16        |
| 26 | Direct Visualization of the Interfacial Degradation of Cathode Coatings in Solid State Batteries: A<br>Combined Experimental and Computational Study. Advanced Energy Materials, 2020, 10, 1903778. | 10.2 | 67        |
| 27 | In-situ resonant band engineering of solution-processed semiconductors generates high performance<br>n-type thermoelectric nano-inks. Nature Communications, 2020, 11, 2069.                        | 5.8  | 23        |
| 28 | Tilted Fluctuation Electron Microscopy Characterization of Magnetically Anisotropic Amorphous<br>Metal Films. Microscopy and Microanalysis, 2019, 25, 1886-1887.                                    | 0.2  | 0         |
| 29 | Machine Learning for High Throughput HRTEM Analysis. Microscopy and Microanalysis, 2019, 25, 150-151.                                                                                               | 0.2  | 7         |
| 30 | Engineering Chiral Structures Through Strain Release: Electron Tomography Study of Twisted<br>Nanowires. Microscopy and Microanalysis, 2019, 25, 1804-1805.                                         | 0.2  | 1         |
| 31 | Polaronic Trions at the MoS 2 /SrTiO 3 Interface. Advanced Materials, 2019, 31, 1903569.                                                                                                            | 11.1 | 26        |
| 32 | Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO <sub>4</sub> overlayers. Sustainable Energy and Fuels, 2019, 3, 127-135.        | 2.5  | 28        |
| 33 | Helical van der Waals crystals with discretized Eshelby twist. Nature, 2019, 570, 358-362.                                                                                                          | 13.7 | 91        |
| 34 | Optical and electrical properties of two-dimensional palladium diselenide. Applied Physics Letters, 2019, 114, .                                                                                    | 1.5  | 74        |
| 35 | Elimination of Response to Relative Humidity Changes in Chemical-Sensitive Field-Effect Transistors.<br>ACS Sensors, 2019, 4, 1857-1863.                                                            | 4.0  | 24        |
| 36 | Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. Nano Letters, 2019,<br>19, 3830-3837.                                                                                | 4.5  | 45        |

MARY C SCOTT

| #  | Article                                                                                                                                                                                                                                                                                                             | IF       | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 37 | Synthetic WSe <sub>2</sub> monolayers with high photoluminescence quantum yield. Science<br>Advances, 2019, 5, eaau4728.                                                                                                                                                                                            | 4.7      | 78        |
| 38 | Three-dimensional Architecture Enabled by Strained Two-dimensional Material Heterojunction. Nano<br>Letters, 2018, 18, 1819-1825.                                                                                                                                                                                   | 4.5      | 24        |
| 39 | Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free<br>photocatalyst for hydrogen evolution. Proceedings of the National Academy of Sciences of the<br>United States of America, 2018, 115, 4345-4350.                                                                       | 3.3      | 207       |
| 40 | Linear and Nonlinear Reconstruction Algorithms for Atomic-Resolution Tomography Using Phase Contrast Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 110-111.                                                                                                                                          | 0.2      | 1         |
| 41 | Characterizing Magnetic Anisotropy in Amorphous Metal Films Using Tilted Fluctuation Electron<br>Microscopy. Microscopy and Microanalysis, 2018, 24, 204-205.                                                                                                                                                       | 0.2      | 1         |
| 42 | Atomic Electron Tomography: Adding a New Dimension to See Single Atoms in Materials. Microscopy and Microanalysis, 2018, 24, 558-559.                                                                                                                                                                               | 0.2      | 0         |
| 43 | Direct observation of anisotropic small-hole polarons in an orthorhombic structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BiV</mml:mi><mml:msub><mml:m mathvariant="normal">O<mml:mn>4</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> films. Physical Review B, 2018, 97. | i<br>1.1 | 7         |
| 44 | Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors.<br>ACS Nano, 2018, 12, 7253-7263.                                                                                                                                                                                   | 7.3      | 298       |
| 45 | Deciphering chemical order/disorder and material properties at the single-atom level. Nature, 2017, 542, 75-79.                                                                                                                                                                                                     | 13.7     | 243       |
| 46 | Tunable and low-loss correlated plasmons in Mott-like insulating oxides. Nature Communications, 2017, 8, 15271.                                                                                                                                                                                                     | 5.8      | 42        |
| 47 | Atomically Altered Hematite for Highly Efficient Perovskite Tandem Waterâ€Splitting Devices.<br>ChemSusChem, 2017, 10, 2449-2456.                                                                                                                                                                                   | 3.6      | 71        |
| 48 | Efficient solar-driven electrochemical CO <sub>2</sub> reduction to hydrocarbons and oxygenates.<br>Energy and Environmental Science, 2017, 10, 2222-2230.                                                                                                                                                          | 15.6     | 145       |
| 49 | Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.<br>Scientific Data, 2016, 3, 160041.                                                                                                                                                                                      | 2.4      | 42        |
| 50 | Three-Dimensional Determination of the Coordinates of Individual Atoms in Materials. Microscopy and Microanalysis, 2016, 22, 916-917.                                                                                                                                                                               | 0.2      | 0         |
| 51 | Stability Studies of MAPbI 3 : Identification of Degradation Pathways and Strategies for Observing the Native Structure of Lead Halide Perovskites. Microscopy and Microanalysis, 2016, 22, 1510-1511.                                                                                                              | 0.2      | 1         |
| 52 | Three-dimensional coordinates of individual atoms in materials revealed by electronÂtomography.<br>Nature Materials, 2015, 14, 1099-1103.                                                                                                                                                                           | 13.3     | 172       |
| 53 | Three-Dimensional Imaging of Dislocations and Defects in Materials at Atomic Resolution Using Electron Tomography. Microscopy and Microanalysis, 2014, 20, 1062-1063.                                                                                                                                               | 0.2      | 0         |
| 54 | Atomic Resolution Tomography of Magnetically Anisotropic FePt Nanoparticles. Microscopy and Microanalysis, 2014, 20, 804-805.                                                                                                                                                                                       | 0.2      | 1         |

| #  | Article                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Towards three-dimensional structural determination of amorphous materials at atomic resolution.<br>Physical Review B, 2013, 88, . | 1.1  | 17        |
| 56 | Electron tomography at 2.4-ångström resolution. Nature, 2012, 483, 444-447.                                                       | 13.7 | 366       |