
Roya Dastjerdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961798/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 2010, 79, 5-18.	5.0	1,132
2	A new method to stabilize nanoparticles on textile surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 345, 202-210.	4.7	183
3	A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids and Surfaces B: Biointerfaces, 2010, 81, 32-41.	5.0	162
4	Investigating the production and properties of Ag/TiO ₂ /PP antibacterial nanocomposite filament yarns. Journal of the Textile Institute, 2010, 101, 204-213.	1.9	95
5	Comparing the effect of three processing methods for modification of filament yarns with inorganic nanocomposite filler and their bioactivity against staphylococcus aureus. Macromolecular Research, 2009, 17, 378-387.	2.4	41
6	Investigating the effect of various blend ratios of prepared masterbatch containing Ag/TiO2 nanocomposite on the properties of bioactive continuous filament yarns. Fibers and Polymers, 2008, 9, 727-734.	2.1	30
7	Nano-colloidal functionalization of textiles based on polysiloxane as a novel photo-catalyst assistant: Processing design. Colloids and Surfaces B: Biointerfaces, 2011, 88, 381-388.	5.0	27
8	A smart dynamic self-induced orientable multiple size nano-roughness with amphiphilic feature as a stain-repellent hydrophilic surface. Colloids and Surfaces B: Biointerfaces, 2012, 91, 280-290.	5.0	25
9	HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency. BioMed Research International, 2013, 2013, 1-7.	1.9	20
10	Processing and Properties of Nanocomposite Filament Yarns with Various Filler Concentrations from Two Different Modification Methods. Macromolecular Symposia, 2008, 274, 154-165.	0.7	16
11	Multifunctional melt-mixed Ag/TiO2 nanocomposite PP fabrics: Water vapour permeability, UV resistance, UV protection and wear properties. Fibers and Polymers, 2013, 14, 298-303.	2.1	16
12	Wear properties of high speed spun multi-component PA6 nanocomposite fabrics; abrasion resistance mechanism of nanocomposites. Wear, 2015, 322-323, 117-125.	3.1	15
13	Comparison of the Morphological, Mechanical, and UV Protection Properties of TiO ₂ /Polyamide 6 (PA6), and ZnO/PA6 Nanocomposite Multifilament Yarns. Journal of Macromolecular Science - Physics, 2015, 54, 783-798.	1.0	14
14	Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: Accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors. Colloids and Surfaces B: Biointerfaces, 2013, 101, 457-464.	5.0	13
15	Size and geometry controlled synthesizing nano-rods via developing a novel in situ polyol process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 386, 45-53.	4.7	12
16	Developing chromic dyeable PET nanocomposites: The dye absorption and complex formation mechanisms. Journal of Applied Polymer Science, 2012, 125, 3688-3694.	2.6	11
17	Polysiloxane features on different nanostructure geometries; nano-wires and nano-ribbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452, 25-31.	4.7	9
18	Mechanism of formation of soft and elastic nanoflowers; a key major guideline. Journal of Cleaner Production, 2018, 200, 331-341.	9.3	7

Roya Dastjerdi

#	Article	IF	CITATIONS
19	An acid-free water-born quaternized chitosan/montmorillonite loaded into an innovative ultra-fine bead-free water-born nanocomposite nanofibrous scaffold; <i>in vitro</i> and <i>in vivo</i> approaches. Biomedical Materials (Bristol), 2017, 12, 045014.	3.3	4
20	Mechanisms and guidelines on the sustainable engineering of self-assembling; nanostars and nanoflowers. Journal of Cleaner Production, 2021, 312, 127570.	9.3	3
21	High‧peed Spun PET Nanocomposites for Smart Multifunctional Approaches. Advances in Polymer Technology, 2018, 37, 84-93.	1.7	2
22	A pathway toward new era of intelligent cell attachment; mechanism and a key major guideline. Journal of Cleaner Production, 2020, 266, 121873.	9.3	2
23	New Features of Silver/Zinc Loaded Nanocomposite Textiles; Dyeability, Abrasion Resistance and Comfort. Journal of Engineered Fibers and Fabrics, 2014, 9, 155892501400900.	1.0	1
24	A Key Major Guideline for Engineering Bioactive Multicomponent Nanofunctionalization for Biomedicine and Other Applications: Fundamental Models Confirmed by Both Direct and Indirect Evidence. BioMed Research International, 2017, 2017, 1-11.	1.9	1
25	Multifunctional Ultra-fine Silky PET Fabrics; Nanofunctionalization via an Ultrasound-assistant Nanocolloidal Preparation. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	1.0	1
26	Production of cationic dyeable poly(ethylene terephthalate) fibers via nanotechnology. Advances in Polymer Technology, 2018, 37, 1897-1905.	1.7	0