List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/696159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	1.8	284
2	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	1.8	278
3	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	1.0	210
4	Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2013, 98, 7-27.	1.8	209
5	ESC Working Group Cellular Biology of the Heart: Position Paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovascular Research, 2014, 104, 399-411.	1.8	143
6	Adipose Tissue-Derived Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1723-1729.	1.1	141
7	Cellular and molecular mechanisms of vascular injury in diabetes — Part I: Pathways of vascular disease in diabetes. Vascular Pharmacology, 2011, 54, 68-74.	1.0	136
8	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	1.0	133
9	ESC Joint Working Groups on Cardiovascular Surgery and the Cellular Biology of the Heart Position Paper: Peri-operative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery. European Heart Journal, 2017, 38, 2392-2411.	1.0	118
10	Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Frontiers in Physiology, 2018, 9, 167.	1.3	118
11	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 725-736.	1.8	114
12	Nutritional mechanisms that influence cardiovascular disease. American Journal of Clinical Nutrition, 2006, 83, 421S-426S.	2.2	111
13	Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vascular Pharmacology, 2017, 90, 1-7.	1.0	111
14	n-3 Fatty Acids in the Treatment of Diabetic Patients: Biological rationale and clinical data. Diabetes Care, 2007, 30, 1012-1026.	4.3	110
15	From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxidants and Redox Signaling, 2019, 30, 2110-2153.	2.5	96
16	ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 2019, 115, 488-500.	1.8	90
17	Transplantation of Mesenchymal Cells Rejuvenated by the Overexpression of Telomerase and Myocardin Promotes Revascularization and Tissue Repair in a Murine Model of Hindlimb Ischemia. Circulation Research, 2013, 113, 902-914.	2.0	88
18	Left Ventricular Assist Devices and Gastrointestinal Bleeding: A Narrative Review of Case Reports and Case Series. Clinical Cardiology, 2013, 36, 190-200.	0.7	85

#	Article	IF	CITATIONS
19	Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. European Journal of Clinical Investigation, 2011, 41, 126-133.	1.7	84
20	Simvastatin Attenuates Expression of Cytokine-inducible Nitric-oxide Synthase in Embryonic Cardiac Myoblasts. Journal of Biological Chemistry, 2005, 280, 13503-13511.	1.6	80
21	The emerging role of Notch pathway in ageing: Focus on the related mechanisms in age-related diseases. Ageing Research Reviews, 2016, 29, 50-65.	5.0	72
22	Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal, 2021, 42, 2630-2642.	1.0	69
23	High glucose-induced hyperosmolarity contributes to COX-2 expression and angiogenesis: implications for diabetic retinopathy. Cardiovascular Diabetology, 2016, 15, 18.	2.7	67
24	Novel therapeutic strategies for cardioprotection. , 2014, 144, 60-70.		64
25	Anticancer therapy-induced vascular toxicity: VEGF inhibition and beyond. International Journal of Cardiology, 2017, 227, 11-17.	0.8	64
26	Antiarrhythmic effects of omega-3 fatty acids: from epidemiology to bedside. American Heart Journal, 2003, 146, 420-430.	1.2	61
27	In vitro neovasculogenic potential of resident adipose tissue precursors. American Journal of Physiology - Cell Physiology, 2008, 295, C1271-C1280.	2.1	57
28	Hepatocyte growth factor/Met gene transfer in cardiac stem cells—potential for cardiac repair. Basic Research in Cardiology, 2010, 105, 443-452.	2.5	57
29	Effects of omega-3 fatty acids on cytokines and adhesion molecules. Current Atherosclerosis Reports, 2004, 6, 485-491.	2.0	55
30	Glycaemic control in acute coronary syndromes: prognostic value and therapeutic options. European Heart Journal, 2010, 31, 1557-1564.	1.0	54
31	Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction. Cardiovascular Research, 2015, 108, 39-49.	1.8	54
32	Cellular and molecular mechanisms of vascular injury in diabetes — Part II: Cellular mechanisms and therapeutic targets. Vascular Pharmacology, 2011, 54, 75-79.	1.0	53
33	Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385.	1.8	53
34	Adipose tissue: a new source for cardiovascular repair. Journal of Cardiovascular Medicine, 2010, 11, 71-80.	0.6	52
35	Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1820-1834.	1.8	51
36	Myocardin A Enhances Telomerase Activities in Adipose Tissue Mesenchymal Cells and Embryonic Stem Cells Undergoing Cardiovascular Myogenic Differentiation. Stem Cells, 2008, 26, 202-211.	1.4	49

#	Article	IF	CITATIONS
37	Circulating endothelial progenitor cells: Do they live up to their name?. Vascular Pharmacology, 2015, 67-69, 2-5.	1.0	49
38	Impact of Sex Differences and Diabetes on Coronary Atherosclerosis and Ischemic Heart Disease. Journal of Clinical Medicine, 2019, 8, 98.	1.0	49
39	Loss of Smooth Muscle α-Actin Leads to NF-κB–Dependent Increased Sensitivity to Angiotensin II in Smooth Muscle Cells and Aortic Enlargement. Circulation Research, 2017, 120, 1903-1915.	2.0	48
40	A recommended practical approach to the management of anthracycline-based chemotherapy cardiotoxicity. Journal of Cardiovascular Medicine, 2016, 17, e84-e92.	0.6	47
41	Diabetic macroangiopathy: Pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage. Vascular Pharmacology, 2018, 107, 27-34.	1.0	47
42	Hepatocyte growth factor: Molecular biomarker and player in cardioprotection and cardiovascular regeneration. Thrombosis and Haemostasis, 2012, 107, 656-661.	1.8	46
43	Innate and adaptive immunity in atherosclerosis. Vascular Pharmacology, 2018, 107, 67-77.	1.0	46
44	The epicardial adipose tissue and the coronary arteries: dangerous liaisons. Cardiovascular Research, 2019, 115, 1013-1025.	1.8	44
45	Biologic function and clinical potential of telomerase and associated proteins in cardiovascular tissue repair and regeneration. European Heart Journal, 2011, 32, 1190-1196.	1.0	43
46	Toll-like receptor-4 signaling pathway in aorta aging and diseases: "its double nature― Journal of Molecular and Cellular Cardiology, 2017, 110, 38-53.	0.9	42
47	Relevance of new drug discovery to reduce NF-κB activation in cardiovascular disease. Vascular Pharmacology, 2012, 57, 41-47.	1.0	41
48	Functional Genomics of Cardioprotection by Ischemic Conditioning and the Influence of Comorbid Conditions: Implications in Target Identification. Current Drug Targets, 2015, 16, 904-911.	1.0	41
49	Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a Position Paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection. Heart Failure Reviews, 2015, 20, 621-631.	1.7	40
50	Current views on anthracycline cardiotoxicity. Heart Failure Reviews, 2016, 21, 621-634.	1.7	39
51	Sex differences in anthracycline-induced cardiotoxicity: the benefits of estrogens. Heart Failure Reviews, 2019, 24, 915-925.	1.7	39
52	Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1805-1819.	1.8	39
53	Cellular and molecular basis of the imbalance between vascular damage and repair in ageing and age-related diseases: As biomarkers and targets for new treatments. Mechanisms of Ageing and Development, 2016, 159, 22-30.	2.2	38
54	Prolonged exposure to high insulin impairs the endothelial PI3-kinase/Akt/nitric oxide signalling. Thrombosis and Haemostasis, 2009, 101, 345-350.	1.8	37

1.0

25

#	Article	IF	CITATIONS
55	A recommended practical approach to the management of target therapy and angiogenesis inhibitors cardiotoxicity. Journal of Cardiovascular Medicine, 2016, 17, e93-e104.	0.6	37
56	Cardioprotection by gene therapy. International Journal of Cardiology, 2015, 191, 203-210.	0.8	34
57	Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1835-1849.	1.8	34
58	Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. European Heart Journal, 2022, 43, 1533-1541.	1.0	33
59	High glucose-induced hyperosmolarity impacts proliferation, cytoskeleton remodeling and migration of human induced pluripotent stem cells via aquaporin-1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2266-2275.	1.8	31
60	Pathophysiology of anthracycline cardiotoxicity. Journal of Cardiovascular Medicine, 2016, 17, e3-e11.	0.6	31
61	Insulin potentiates cytokine-induced VCAM-1 expression in human endothelial cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 511-516.	1.8	30
62	Stem cells and growth factor delivery systems for cardiovascular disease. Journal of Biotechnology, 2011, 154, 291-297.	1.9	30
63	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
64	Recent Developments in Cardiovascular Stem Cells. Circulation Research, 2014, 115, e71-8.	2.0	29
65	Perspectives on Directions and Priorities for Future Preclinical Studies in Regenerative Medicine. Circulation Research, 2019, 124, 938-951.	2.0	28
66	Human-Induced Pluripotent Stem Cells: In Quest of Clinical Applications. Molecular Biotechnology, 2012, 52, 193-203.	1.3	27
67	Potential cardiac risk of immuneâ€checkpoint blockade as anticancer treatment: What we know, what we do not know, and what we can do to prevent adverse effects. Medicinal Research Reviews, 2018, 38, 1447-1468.	5.0	27
68	COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160.	1.8	26
69	Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacological Research, 2021, 168, 105581.	3.1	26
70	Effect of High-Dose Atorvastatin Reload on the Release of Endothelial Progenitor Cells in Patients on Long-Term Statin Treatment Who Underwent Percutaneous Coronary Intervention (from the) Tj ETQq0 0 0 rgBT	/O ver lock	1 2₂ 5f 50 137
71	Diagnostic and Prognostic Relevance of Red Blood Cell Distribution Width for Vascular Aging and Cardiovascular Diseases. Rejuvenation Research, 2019, 22, 146-162.	0.9	25

Nitroso-Redox Balance and Modulation of Basal Myocardial Function: An Update from the Italian Society of Cardiovascular Research (SIRC). Current Drug Targets, 2015, 16, 895-903.

#	Article	IF	CITATIONS
73	Novel insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection. Journal of Cardiovascular Medicine, 2016, 17, e76-e83.	0.6	24
74	Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. Journal of Cellular and Molecular Medicine, 2020, 24, 12331-12340.	1.6	24
75	Aterogénesis y diabetes: resistencia a la insulina e hiperinsulinemia. Revista Espanola De Cardiologia, 2012, 65, 309-313.	0.6	23
76	Co-Activation of Nuclear Factor-l̂ºB and Myocardin/Serum Response Factor Conveys the Hypertrophy Signal of High Insulin Levels in Cardiac Myoblasts. Journal of Biological Chemistry, 2014, 289, 19585-19598.	1.6	23
77	Preventing antiblastic drug-related cardiomyopathy. Journal of Cardiovascular Medicine, 2016, 17, e64-e75.	0.6	23
78	Perivascular fibrosis and the microvasculature of the heart. Still hidden secrets of pathophysiology?. Vascular Pharmacology, 2018, 107, 78-83.	1.0	23
79	VEGF receptor switching in heart development and disease. Cardiovascular Research, 2009, 84, 4-6.	1.8	22
80	Omega-3 fatty acids attenuate constitutive and insulin-induced CD36 expression through a suppression of PPARα/γ activity in microvascular endothelial cells. Thrombosis and Haemostasis, 2011, 106, 500-510.	1.8	22
81	Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1850-1862.	1.8	22
82	Nutrients and Gene Expression. , 2004, 93, 99-133.		20
83	Pathways and Drugs in Pulmonary Arterial Hypertension – Focus on the Role of Endothelin Receptor Antagonists. Cardiovascular Drugs and Therapy, 2015, 29, 469-479.	1.3	20
84	Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity. Journal of Cardiovascular Medicine, 2016, 17, e35-e44.	0.6	20
85	Insights into therapeutic products, preclinical research models, and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine. Cardiovascular Research, 2021, 117, 1428-1433.	1.8	20
86	Non-Invasive In Vivo Detection of Peripheral Limb Ischemia Improvement in the Rat After Adipose Tissue-Derived Stromal Cell Transplantation. Circulation Journal, 2012, 76, 1517-1525.	0.7	19
87	Glucose Metabolism, Hyperosmotic Stress, and Reprogramming of Somatic Cells. Molecular Biotechnology, 2013, 55, 169-178.	1.3	19
88	Transplantation of Mesenchymal Cells Improves Peripheral Limb Ischemia in Diabetic Rats. Molecular Biotechnology, 2014, 56, 438-448.	1.3	17
89	Developmental programming of adult haematopoiesis system. Ageing Research Reviews, 2019, 54, 100918.	5.0	17
90	Proteomic analysis of the secretome of adipose tissue-derived murine mesenchymal cells overexpressing telomerase and myocardin. Journal of Molecular and Cellular Cardiology, 2019, 131, 171-186.	0.9	17

#	Article	IF	CITATIONS
91	Ponatinib Induces Vascular Toxicity through the Notch-1 Signaling Pathway. Journal of Clinical Medicine, 2020, 9, 820.	1.0	16
92	Anthracyclines and regional myocardial damage in breast cancer patients. A multicentre study from the Working Group on Drug Cardiotoxicity and Cardioprotection, Italian Society of Cardiology (SIC). European Heart Journal Cardiovascular Imaging, 2021, 22, 406-415.	0.5	16
93	Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-α. Experimental Cell Research, 2009, 315, 2921-2928.	1.2	15
94	Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	1.9	15
95	Simulated hyperglycemia impairs insulin signaling in endothelial cells through a hyperosmolar mechanism. Vascular Pharmacology, 2020, 130, 106678.	1.0	15
96	Aquaporin-1 and Sodium-Hydrogen Exchangers as Pharmacological Targets in Diabetic Atherosclerosis. Current Drug Targets, 2015, 16, 361-365.	1.0	15
97	Exercise-induced pulmonary hypertension in HFpEF and HFrEF: Different pathophysiologic mechanism behind similar functional impairment. Vascular Pharmacology, 2022, 144, 106978.	1.0	15
98	"State-of-Art―paper of the Italian Working Group on Atherosclerosis: Preclinical assessment of early coronary atherosclerosis. International Journal of Cardiology, 2016, 214, 442-447.	0.8	14
99	Atherogenesis and Diabetes: Focus on Insulin Resistance and Hyperinsulinemia. Revista Espanola De Cardiologia (English Ed), 2012, 65, 309-313.	0.4	13
100	Transplantation of telomerase/myocardin-co-expressing mesenchymal cells in the mouse promotes myocardial revascularization and tissue repair. Vascular Pharmacology, 2020, 135, 106807.	1.0	13
101	Sodium-glucose cotransporter type 2 inhibitors prevent ponatinib-induced endothelial senescence and disfunction: A potential rescue strategy. Vascular Pharmacology, 2022, 142, 106949.	1.0	13
102	Prolonged exposure to high insulin impairs the endothelial PI3-kinase/Akt/nitric oxide signalling. Thrombosis and Haemostasis, 2009, 101, 345-50.	1.8	13
103	Myocardin-A enhances expression of promyogenic genes without depressing telomerase activity in adipose tissue-derived mesenchymal stem cells. International Journal of Cardiology, 2013, 167, 2912-2921.	0.8	12
104	Connexin 43 and Connexin 26 Involvement in the Ponatinib-Induced Cardiomyopathy: Sex-Related Differences in a Murine Model. International Journal of Molecular Sciences, 2021, 22, 5815.	1.8	12
105	Impaired fasting plasma glucose and long-term cardiovascular risk: still a foggy relationship. European Heart Journal, 2010, 31, 1159-1162.	1.0	11
106	Sodium–hydrogen exchangers (NHE) in human cardiovascular diseases: Interfering strategies and their therapeutic applications. Vascular Pharmacology, 2013, 59, 127-130.	1.0	11
107	Epigenetic regulation of insulin-like growth factor signaling: A novel insight into the pathophysiology of neonatal pulmonary hypertension. Vascular Pharmacology, 2015, 73, 4-7.	1.0	11
108	Diagnóstico y prevención de la cardiotoxicidad inducida por fármacos antineoplásicos: deÂlaÂimagen aÂlas tecnologÃas «ómicas». Revista Espanola De Cardiologia, 2017, 70, 576-582.	0.6	11

#	Article	IF	CITATIONS
109	Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovascular Research, 2017, 113, 1418-1419.	1.8	11
110	Targeting phosphatidylinositol 3-kinase-Akt through hepatocyte growth factor for cardioprotection. Journal of Cardiovascular Medicine, 2013, 14, 249-253.	0.6	10
111	The acute impact of high-dose lipid-lowering treatment on endothelial progenitor cells in patients with coronary artery disease—The REMEDY-EPC early substudy. PLoS ONE, 2017, 12, e0172800.	1.1	10
112	Epigenetic modulation of vascular diseases: Assessing the evidence and exploring the opportunities. Vascular Pharmacology, 2018, 107, 43-52.	1.0	10
113	Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovascular Research, 2021, , .	1.8	10
114	MR Angiography, MR Imaging and Proton MR Spectroscopy In-Vivo Assessment of Skeletal Muscle Ischemia in Diabetic Rats. PLoS ONE, 2012, 7, e44752.	1.1	9
115	Multimodality imaging for pre-clinical assessment of Fabry's cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2014, 15, 1094-1100.	0.5	9
116	Telomerase/myocardin expressing mesenchymal cells induce survival and cardiovascular markers in cardiac stromal cells undergoing ischaemia/reperfusion. Journal of Cellular and Molecular Medicine, 2021, 25, 5381-5390.	1.6	9
117	Prostacyclin improves transcoronary myocardial delivery of adipose tissue-derived stromal cells. European Heart Journal, 2006, 27, 2054-2061.	1.0	8
118	Isolated Exercise-Induced Pulmonary Hypertension Associates with Higher Cardiovascular Risk in Scleroderma Patients. Journal of Clinical Medicine, 2020, 9, 1910.	1.0	8
119	Stem Cell Aging and Age-Related Cardiovascular Disease: Perspectives of Treatment by Ex-vivo Stem Cell Rejuvenation. Current Drug Targets, 2015, 16, 780-785.	1.0	8
120	The paradox of pulmonary arterial hypertension in Italy in the COVID-19 era: is risk of disease progression around the corner?. European Respiratory Journal, 2022, 60, 2102276.	3.1	8
121	Association of the European Society of Cardiology echocardiographic probability grading for pulmonary hypertension with short and mid-term clinical outcomes after heart valve surgery. Vascular Pharmacology, 2020, 125-126, 106648.	1.0	7
122	Long-Term Engraftment and Angiogenic Properties of Lentivirally Transduced Adipose Tissue-Derived Stromal Cells. Molecular Biotechnology, 2013, 54, 13-24.	1.3	6
123	Coâ€expression of glycosylated aquaporinâ€∃ and transcription factor NFAT5 contributes to aortic stiffness in diabetic and atherosclerosisâ€prone mice. Journal of Cellular and Molecular Medicine, 2020, 24, 2857-2865.	1.6	6
124	Vascular rejuvenation: a new therapeutic target?. European Heart Journal, 2021, 42, 4370-4372.	1.0	6
125	Exploring the mechanisms of action of gliflozines in heart failure and possible implications in pulmonary hypertension. Vascular Pharmacology, 2021, 138, 106839.	1.0	6
126	Sexâ€related differential susceptibility to ponatinib cardiotoxicity and differential modulation of the Notch1 signalling pathway in a murine model. Journal of Cellular and Molecular Medicine, 2022, , .	1.6	6

#	Article	IF	CITATIONS
127	Angiocrine endothelium: From physiology to atherosclerosis and cardiac repair. Vascular Pharmacology, 2022, 144, 106993.	1.0	6
128	Simvastatin-enhanced expression of promyogenic nuclear factors and cardiomyogenesis of murine embryonic stem cells. Vascular Pharmacology, 2014, 60, 8-16.	1.0	5
129	Rosuvastatin for Reduction of Myocardial Damage during Coronary Angioplasty - the Remedy Trial. Cardiovascular Drugs and Therapy, 2016, 30, 465-472.	1.3	5
130	Von Willebrand factor, ADAMTS13, and coronary microvascular obstruction: beautiful hypotheses, ugly facts. Cardiovascular Research, 2016, 111, 169-171.	1.8	5
131	Early Diagnosis and Prediction of Anticancer Drug-induced Cardiotoxicity: From Cardiac Imaging to "Omics―Technologies. Revista Espanola De Cardiologia (English Ed), 2017, 70, 576-582.	0.4	5
132	Novel Strategies in the Treatment of Pulmonary Arterial Hypertension. Current Drug Targets, 2016, 17, 817-823.	1.0	5
133	Aerobic exercise-related attenuation of arterial pulmonary hypertension: A right arrow targets the disease?. Vascular Pharmacology, 2016, 87, 6-9.	1.0	4
134	Exercise-induced pulmonary hypertension in HIV patients: Association with poor clinical and immunological status. Vascular Pharmacology, 2021, 139, 106888.	1.0	4
135	Electrical Plasticity and Cardioprotection in Myocardial Ischemia—Role of Selective Sodium Channel Blockers. Clinical Cardiology, 2013, 36, 255-261.	0.7	2
136	Deficiency of NDUFC2: Cause or bystander in acute coronary syndromes?. International Journal of Cardiology, 2019, 286, 134-135.	0.8	2
137	Pulse wave velocity in white coat and masked hypertension. Journal of Clinical Hypertension, 2020, 22, 812-813.	1.0	2
138	Is it the time of seno-therapeutics application in cardiovascular pathological conditions related to ageing?. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100027.	1.7	2
139	Pharmacogenomics and circadian rhythms as mediators of cardiovascular drug-drug interactions. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100025.	1.7	2
140	The Nutrigenetics of Cardiovascular Disease. , 2020, , 355-360.		1
141	Multi-Target Drugs for Blood Cancer in the Elderly: Implications of Damage and Repair in the Cardiovascular Toxicity. Frontiers in Physiology, 2021, 12, 792751.	1.3	1
142	Exercise-Induced Pulmonary Hypertension Is Associated with High Cardiovascular Risk in Patients with HIV. Journal of Clinical Medicine, 2022, 11, 2447.	1.0	1
143	Stem Cell Therapies for Cardiac Regeneration: Current Burden—Future Directions. Pancreatic Islet Biology, 2016, , 191-196.	0.1	0
144	Induced Pluripotent Stem Cells for Cardiac Regeneration. Pancreatic Islet Biology, 2016, , 31-43.	0.1	0

9

#	Article	IF	CITATIONS
145	The Fourth European-South African Cardiovascular Research Workshop. European Heart Journal, 2020, 41, 203-204.	1.0	Ο
146	The ESC Working Group on Cellular Biology of the Heart. European Heart Journal, 2020, 41, 2614-2616.	1.0	0
147	Editors' Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		Ο
148	Prevention and Clinical Management of Cardiovascular Damage Induced by Anticancer Drugs: Need for Early Biomarkers and Cardio- and Vasculoprotection in Personalized Therapy. Current Clinical Pathology, 2019, , 183-204.	0.0	0
149	Exploring Enhanced Cell-Based Therapy for Ischemic Heart Disease and Heart Failure. Journal of Clinical Medicine, 2022, 11, 3837.	1.0	Ο