Jou-Ming Chang

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6961421/publications.pdf
Version: 2024-02-01

1 Parallel construction of multiple independent spanning trees on highly scalable datacenter
networks. Applied Mathematics and Computation, 2022, 413, 126617.
1.45

Completely Independent Spanning Trees on BCCC Data Center Networks With an Application to
4.0

24 Fault-Tolerant Routing. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 1939-1952.

> Configuring Protection Routing via Completely Independent Spanning Trees in Dense Gaussian On-Chip Networks. IEEE Transactions on Network Science and Engineering, 2022, 9, 932-946.
$4.1 \quad 6$

Transmission Failure Analysis of Multi-Protection Routing in Data Center Networks With
Heterogeneous Edge-Core Servers. IEEE/ACM Transactions on Networking, 2022, 30, 1689-1702.
2.6

3

5 Constructing tri-CISTs in shuffle-cubes. Journal of Combinatorial Optimization, 2022, 44, 3194-3211.
$0.8 \quad 1$

6 A secure data transmission scheme based on multi-protection routing in datacenter networks.
$2.7 \quad 3$
Journal of Parallel and Distributed Computing, 2022, 167, 222-231.

7 Reliability Analysis of Alternating Group Graphs and Split-Stars. Computer Journal, 2021, 64, 1425-1436.

8 Constructing dual-CISTs of pancake graphs and performance assessment of protection routings on
some Cayley networks. Journal of Supercomputing, 2021, 77, 990-1014.
2.4

11

9 Strong Menger Connectedness of Augmented <i>k</i>-ary <i>n</i>-cubes. Computer Journal, 2021, 64,
$9 \quad 812-825$
1.5

14

10 A loopless algorithm for generating (k,Âm)-ary trees in Gray code order. Optimization Letters, 2021, 15,
1133-1154.
0.9

1
The Construction of Multiple Independent Spanning Trees on Burnt Pancake Networks. IEEE Access,
2021,9, 16679-16691. $\quad 2.6$

14 Constructing dual-CISTs with short diameters using a generic adjustment scheme on bicubes.
Theoretical Computer Science, 2021, 878-879, 102-112.
$0.5 \quad 5$

Packing internally disjoint Steiner trees to compute the $\hat{\varrho} 3$-connectivity in augmented cubes. Journal of
15 Parallel and Distributed Computing, 2021, 154, 42-53.
2.7

9

Constructing Tri-CISTs in Shuffle-Cubes. Lecture Notes in Computer Science, 2021, , 330-342.
1.0
o

Three Edge-Disjoint Hamiltonian Cycles in Crossed Cubes with Applications to Fault-Tolerant Data
Broadcasting., 2021, , .

Analysis on component connectivity of bubble-sort star graphs and burnt pancake graphs. Discrete
A well-equalized 3-CIST partition of alternating group graphs. Information Processing Letters, 2020,
$155,105874$.Two-disjoint-cycle-cover bipancyclicity of balanced hypercubes. Applied Mathematics and Computation,
$2020,381,125305$.
A protection routing with secure mechanism in MÃ厅bius cubes. Journal of Parallel and Distributed Computing, 2020, 140, 1-12.
A Parallel Algorithm for Constructing Two Edge-disjoint Hamiltonian Cycles in Locally Twisted Cubes.

$29 \quad$| A Parallel |
| :--- |
| |
| $, 2020, ~, ~$ |

2.7
outing. Information Sciences, 2020, 541, 516-530.

30 A Loopless Algorithm for Generating (k,Âm)-ary Trees in Gray-Code Order. Lecture Notes in Computer
$1.0 \quad 0$
Science, 2020, , 121-132.

Constructing dual-CISTs of DCell data center networks. Applied Mathematics and Computation, 2019,

Improved algorithms for ranking and unranking (k, Âm)-ary trees in B-order. Journal of Combinatorial Optimization, 2019, , 1.

Amortized efficiency of constructing multiple independent spanning trees on bubble-sort networks.
 0.8
 17
 33 Journal of Combinatorial Optimization, 2019, 38, 972-986.

Measuring the Vulnerability of Alternating Group Graphs and Split-Star Networks in Terms of
Component Connectivity. IEEE Access, 2019, 7, 97745-97759.
2.6

17

35 A two-stages tree-searching algorithm for finding three completely independent spanning trees.
Theoretical Computer Science, 2019, 784, 65-74.
0.5

18

```
37 Three Completely Independent Spanning Trees of Crossed Cubes with Application to Secure-Protection
Routing., 2019, , .
```

43 Constructing Three Completely Independent Spanning Trees in Locally Twisted Cubes. Lecture Notes in
Computer Science, 2019, , 88-99.
Cycle Embedding in Generalized Recursive Circulant Graphs. IEICE Transactions on Information andSystems, 2018, E101.D, 2916-2921.47 Two Kinds of Generalized 3-Connectivities of Alternating Group Networks. Lecture Notes in ComputerScience, 2018, , 3-14.

55 Vertex-transitivity on folded crossed cubes. Information Processing Letters, 2016, 116, 689-693.	
56	11
Locally exchanged twisted cubes: Connectivity and super connectivity. Information Processing	
Letters, 2016,116, 460-466.	

Gray-Code Ranking and Unranking on Left-Weight Sequences of Binary Trees. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99.A, 1067-1074.

58 Amortized Efficiency of Ranking and Unranking Left-Child Sequences in Lexicographic Order. Lecture
$1.0 \quad 1$
Notes in Computer Science, 2016, , 505-518.

59 Gray Codes for AT-Free Orders via Antimatroids. Lecture Notes in Computer Science, 2016, , 77-87.
$1.0 \quad 1$

60 An Energy-Aware Random Multi-path Routing Protocol for MANETs. , 2015, , .

```
61 Pruning Longer Branches of Independent Spanning Trees on Folded Hyper-Stars. Computer Journal,
```

2015, 58, 2972-2981.

A fully parallelized scheme of constructing independent spanning trees on MÃๆbius cubes. Journal of
Supercomputing, 2015, 71, 952-965.
2.4

20

63 Ranking left-weight sequences of binary trees in gray-code order. , 2015, , .
0

64 Parallel Construction of Independent Spanning Trees on Enhanced Hypercubes. IEEE Transactions on
Parallel and Distributed Systems, 2015, 26, 3090-3098.
4.0

32

65 Folded crossed cube with five or more dimensions is not vertex-transitive. , 2015, , .
0

66 A Fast Parallel Algorithm for Constructing Independent Spanning Trees on Parity Cubes. Applied Mathematics and Computation, 2015, 268, 489-495.

A Note on the Degree Condition of Completely Independent Spanning Trees. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, 2015, E98.A, 2191-2193.
0.2

30

On the Structure of Locally Outerplanar Graphs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, E98.A, 1212-1215.

0

69 Parallel Construction of Independent Spanning Trees on Parity Cubes. , 2014, , .
O

70 On the complexity of graph clustering with bounded diameter. , 2014, , .

A comment on â€œIndependent spanning trees in crossed cubesâ€: Information Processing Letters, 2014,
$114,734-739$.
0.4
77 Queue Layouts of Toroidal Grids. IEICE Transactions on Fundamentals of Electronics, Communications 0.2
and Computer Sciences, 2014, E97.A, 1180-1186.0$0.5 \quad 20$Tripartite Graphs. Smart Innovation, Systems and Technologies, 2013, , 107-113.0.2479 Ranking and Unranking of Non-regular Trees in Cray-Code Order. IEICE Transactions on Fundamentalsof Electronics, Communications and Computer Sciences, 2013, E96.A, 1059-1065.
A Loopless Algorithm for Generating Multiple Binary Tree Sequences Simultaneously. Lecture Notes inComputer Science, 2013, , 340-350.
Ranking and Unranking of t-Ary Tre
Systems, 2011, E94-D, 226-232.0.412
82
A Quadratic Algorithm for Finding Next-to-Shortest Paths in Graphs. Algorithmica, 2011, 61, 402-418. 1.0 10
83 Broadcasting secure messages via optimal independent spanning trees in folded hypercubes. Discrete 0.5 45
Applied Mathematics, 2011, 159, 1254-1263.
Amortized efficiency of generating planar paths in convex position. Theoretical Computer Science, 2011, 412, 4504-4512. 0.5 3
84Ranking and unranking of non-regular trees with a prescribed branching sequence. Mathematical and2.014Computer Modelling, 2011, 53, 1331-1335.86 Ranking and unranking of well-formed parenthesis strings in diverse representations. , 2011, , .0
87 A new upper bound on the queuenumber of hypercubes. Discrete Mathematics, 2010, 310, 935-939. 0.4 5
Independent spanning trees on folded hyperâ€stars. Networks, 2010, 56, 272-281.1.612

Independent Spanning Trees on Folded Hypercubes. , 2009, , .
On the independent spanning trees of recursive circulant graphs <mml:math altimg="sil.gif"
display="inline" overflow="scroll" xmlns:xocs="http:/|www.elsevier.com/xml/xocs/dtd" xmlns:xs="http:/|www.w3.org/2001/XMLSchema"

94 | | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" |
| :--- | :--- |
| xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" | |
| xmlns:tb="http:/\|www.etsevier.com/xml/common/table/dtd" | |

On the diameter of geometric path graphs of points in convex position. Information Processing
$0.4 \quad 7$
9

Letters, 2009, 109, 409-413.

97 A Developed Restricted Rotation for Binary Trees Transformation. , 2009, , .

Fault-tolerant cycle-embedding in alternating group graphs. Applied Mathematics and Computation, 2008, 197, 760-767.
$1.4 \quad 47$

> The existence and uniqueness of strong kings in tournaments. Discrete Mathematics, 2008, 308, $2629-2633$.
100 A Note on â€œAn improved upper bound on the queuenumber of the hypercubeâ€: Information Processing

110 Sorting a sequence of strong kings in a tournament. Information Processing Letters, 2003, 87, 317-320.

112 Distributed algorithms for finding the unique minimum distance dominating set in directed
2.7

16
split-stars. Journal of Parallel and Distributed Computing, 2003, 63, 481-487.

113 RECOGNIZING HINGE-FREE LINE GRAPHS AND TOTAL GRAPHS. Taiwanese Journal of Mathematics, 2001, 5, .

0.2

5

114 On the powers of graphs with bounded asteroidal number. Discrete Mathematics, 2000, 223, 125-133.
115 Solving the all-pairs-shortest-length problem on chordal bipartite graphs. Information Processing
Letters, 1999, 69, 87-93.
116 LexBFS-Ordering in Asteroidal Triple-Free Graphs. Lecture Notes in Computer Science, 1999, , 163-172

117 The recognition of geodetically connected graphs. Information Processing Letters, 1998, 65, 81-88.
0.4

10

Finding the set of all hinge vertices for strongly chordal graphs in linear time. Information Sciences,
4.0

11

