Genki Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961407/publications.pdf

Version: 2024-02-01

		361413	345221
55	1,377	20	36
papers	citations	h-index	g-index
55	55	55	1420
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	In-situ observation of abnormal grain growth in a low-alloyed carbon steel using SEM-EBSD. Materialia, 2021, 15, 100985.	2.7	3
2	Effects of Cooling Rate after Hot Forging on Precipitation of Fine Particles during Subsequent Normalizing and Austenite Grain Growth during Carburization of Al- and Nb-microalloyed Case-hardening Steel. ISIJ International, 2021, 61, 1964-1970.	1.4	4
3	Sr-Doped Ca ₂ AlMnO _{5Â+Âδ} for Energy-Saving Oxygen Separation Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 9317-9326.	6.7	7
4	Precipitation Behavior of Combined Precipitates in Carbon Steels. Materia Japan, 2021, 60, 486-491.	0.1	O
5	Faster Generation of Nanoporous Hematite Ore through Dehydration of Goethite under Vacuum Conditions. ISIJ International, 2021, 61, 493-497.	1.4	2
6	Effects of Concentrations of Micro-alloying Elements and Hot-forging Temperature on Austenite Grain Structure Formed during Carburization of Case-hardening Steel. ISIJ International, 2020, 60, 2549-2557.	1.4	7
7	Austenite memory during reverse transformation of steels at different heating rates. Materialia, 2019, 7, 100409.	2.7	3
8	Synthesis of AlN particles via direct nitridation in a drop tube furnace. Journal of the Ceramic Society of Japan, 2019, 127, 810-817.	1.1	1
9	Effects of Fine Precipitates on Austenite Grain Refinement of Micro-alloyed Steel during Cyclic Heat Treatment. ISIJ International, 2019, 59, 2098-2104.	1.4	13
10	Crystalline Evaluation of Size-Controlled Silicon and Silicon Oxide Nanoparticles Produced by Solution Plasma Discharge. Materials Transactions, 2019, 60, 688-692.	1.2	3
11	Combustion synthesis of AlN doped with carbon and oxygen. Journal of the American Ceramic Society, 2019, 102, 524-532.	3.8	7
12	Sr substitution effects on atomic and local electronic structure of Ca ₂ AlMnO _{5+Î} . Surface and Interface Analysis, 2019, 51, 65-69.	1.8	4
13	Solution Combustion Synthesis of Functional Powders. Journal of the Society of Powder Technology, Japan, 2019, 56, 267-271.	0.1	O
14	Formation of Different Si ₃ N ₄ Nanostructures by Salt-Assisted Nitridation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11852-11861.	8.0	18
15	Combustion synthesis of YAG:Ce phosphors via the thermite reaction of aluminum. Journal of Rare Earths, 2018, 36, 248-256.	4.8	14
16	Development of a microencapsulated Al–Si phase change material with high-temperature thermal stability and durability over 3000 cycles. Journal of Materials Chemistry A, 2018, 6, 18143-18153.	10.3	63
17	Solution-Plasma-Mediated Synthesis of Si Nanoparticles for Anode Material of Lithium-Ion Batteries. Nanomaterials, 2018, 8, 286.	4.1	14
18	Microencapsulation of eutectic and hyper-eutectic Al-Si alloy as phase change materials for high-temperature thermal energy storage. Solar Energy Materials and Solar Cells, 2018, 187, 255-262.	6.2	45

#	Article	IF	Citations
19	Effects of Al particle size and nitrogen pressure on AlN combustion synthesis. Ceramics International, 2017, 43, 9872-9876.	4.8	17
20	Three-dimensional analysis of Eu dopant atoms in Ca- $\hat{l}\pm$ -SiAlON via through-focus HAADF-STEM imaging. Ultramicroscopy, 2017, 175, 97-104.	1.9	13
21	Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Applied Energy, 2017, 188, 9-18.	10.1	148
22	Atomic and Local Electronic Structures of Ca ₂ AlMnO _{5+Î} as an Oxygen Storage Material. Chemistry of Materials, 2017, 29, 648-655.	6.7	12
23	Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2 solid solution for rechargeable lithium-ion batteries. Electrochimica Acta, 2017, 224, 71-79.	5.2	26
24	Combustion synthesis of Ca-α-SiAlON:Eu2+ phosphors with different Ca concentrations and diluent ratios. Ceramics International, 2017, 43, 12396-12401.	4.8	7
25	Estimating the Spatial Distribution of Ca Dopants in α-SiAlON by Statistical Analysis of HAADF-STEM Image. Materials Transactions, 2017, 58, 1341-1345.	1.2	0
26	Optimization of the Dehydration Temperature of Goethite to Control Pore Morphology. ISIJ International, 2016, 56, 1598-1605.	1.4	15
27	Solution combustion synthesis of porous Sn–C composite as anode material for lithium ion batteries. Advanced Powder Technology, 2016, 27, 1730-1737.	4.1	10
28	Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries. Electrochimica Acta, 2016, 209, 225-234.	5.2	46
29	Salt-assisted combustion synthesis of Ca-α-SiAlON:Eu2+ phosphors. Journal of Alloys and Compounds, 2016, 681, 22-27.	5.5	11
30	Limonitic Laterite Ore as a Catalyst for the Dry Reforming of Methane. Energy & Ener	5.1	8
31	Twin formation in hematite during dehydration of goethite. Physics and Chemistry of Minerals, 2016, 43, 749-757.	0.8	8
32	Estimating the dopant distribution in Ca-doped \hat{l}_{\pm} -SiAlON: statistical HAADF-STEM analysis and large-scale atomic modeling. Microscopy (Oxford, England), 2016, 65, 400-406.	1.5	5
33	MnO nanocrystals incorporated in a N-containing carbon matrix for Li ion battery anodes. RSC Advances, 2016, 6, 30445-30453.	3.6	12
34	Nanomaterial Synthesis Using Plasma Generation in Liquid. Journal of Nanomaterials, 2015, 2015, 1-21.	2.7	137
35	A facile solution combustion synthesis of nanosized amorphous iron oxide incorporated in a carbon matrix for use as a high-performance lithium ion battery anode material. Journal of Alloys and Compounds, 2015, 633, 424-429.	5.5	21
36	Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries. Advanced Powder Technology, 2015, 26, 665-671.	4.1	34

#	Article	IF	CITATIONS
37	Microencapsulation of Metal-based Phase Change Material for High-temperature Thermal Energy Storage. Scientific Reports, 2015, 5, 9117.	3.3	154
38	Generation of solution plasma over a large electrode surface area. Journal of Applied Physics, 2015, 118, .	2.5	21
39	Improved electrochemical properties of LiMn ₂ O ₄ with the Bi and La co-doping for lithium-ion batteries. RSC Advances, 2015, 5, 73315-73322.	3.6	24
40	Solution plasma synthesis of Si nanoparticles. Nanotechnology, 2015, 26, 235602.	2.6	18
41	Glycine–nitrate-based solution-combustion synthesis of SrTiO3. Journal of Alloys and Compounds, 2015, 652, 496-502.	5.5	23
42	Synthesis of nonstoichiometric titanium oxide nanoparticles using discharge in HCl solution. Journal of Applied Physics, 2014, 115, .	2.5	20
43	Excitation temperature of a solution plasma during nanoparticle synthesis. Journal of Applied Physics, 2014, 116, 083301.	2.5	21
44	High-speed camera observation of solution plasma during nanoparticles formation. Applied Physics Letters, 2014, 104, 083104.	3.3	13
45	Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries. Advanced Powder Technology, 2014, 25, 342-347.	4.1	49
46	Surfactant-assisted synthesis of Sn nanoparticles via solution plasma technique. Advanced Powder Technology, 2014, 25, 728-732.	4.1	23
47	Porous Ore Structure and Deposited Carbon Type during Integrated Pyrolysis–Tar Decomposition. Energy & Fuels, 2014, 28, 2129-2134.	5.1	25
48	Solution plasma synthesis of bimetallic nanoparticles. Nanotechnology, 2014, 25, 135603.	2.6	31
49	A New Route to Synthesize \hat{I}^2 -SiAlON:Eu2+Phosphors for White Light-Emitting Diodes. Applied Physics Express, 2013, 6, 042105.	2.4	20
50	A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7077.	10.3	58
51	Surface morphology of a glow discharge electrode in a solution. Journal of Applied Physics, 2012, 112,	2.5	12
52	Influence of Solution Temperature and Surfactants on Morphologies of Tin Oxide Produced Using a Solution Plasma Technique. Crystal Growth and Design, 2012, 12, 2455-2459.	3.0	25
53	Ripple formation on a nickel electrode during a glow discharge in a solution. Applied Physics Letters, 2012, 100, 181601.	3.3	10
54	Synthesis of copper/copper oxide nanoparticles by solution plasma. Journal of Applied Physics, 2011, 110, .	2.5	71

#	Article	IF	CITATIONS
55	Size-Controlled Ni Nanoparticles Formation by Solution Glow Discharge. Journal of the Physical Society of Japan, 2010, 79, 083501.	1.6	21