## Genki Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961407/publications.pdf Version: 2024-02-01



CENKI SAITO

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microencapsulation of Metal-based Phase Change Material for High-temperature Thermal Energy<br>Storage. Scientific Reports, 2015, 5, 9117.                                                                                             | 3.3  | 154       |
| 2  | Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Applied Energy, 2017, 188, 9-18.                                           | 10.1 | 148       |
| 3  | Nanomaterial Synthesis Using Plasma Generation in Liquid. Journal of Nanomaterials, 2015, 2015, 1-21.                                                                                                                                  | 2.7  | 137       |
| 4  | Synthesis of copper/copper oxide nanoparticles by solution plasma. Journal of Applied Physics, 2011, 110, .                                                                                                                            | 2.5  | 71        |
| 5  | Development of a microencapsulated Al–Si phase change material with high-temperature thermal stability and durability over 3000 cycles. Journal of Materials Chemistry A, 2018, 6, 18143-18153.                                        | 10.3 | 63        |
| 6  | A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and<br>their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries. Journal of<br>Materials Chemistry A, 2013, 1, 7077. | 10.3 | 58        |
| 7  | Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries. Advanced Powder Technology, 2014, 25, 342-347.                                                                                                        | 4.1  | 49        |
| 8  | Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries. Electrochimica Acta, 2016, 209, 225-234.                                                                 | 5.2  | 46        |
| 9  | Microencapsulation of eutectic and hyper-eutectic Al-Si alloy as phase change materials for<br>high-temperature thermal energy storage. Solar Energy Materials and Solar Cells, 2018, 187, 255-262.                                    | 6.2  | 45        |
| 10 | Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries. Advanced Powder Technology, 2015, 26, 665-671.                                          | 4.1  | 34        |
| 11 | Solution plasma synthesis of bimetallic nanoparticles. Nanotechnology, 2014, 25, 135603.                                                                                                                                               | 2.6  | 31        |
| 12 | Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2 solid solution for rechargeable lithium-ion batteries. Electrochimica Acta, 2017, 224, 71-79.                                                      | 5.2  | 26        |
| 13 | Influence of Solution Temperature and Surfactants on Morphologies of Tin Oxide Produced Using a Solution Plasma Technique. Crystal Growth and Design, 2012, 12, 2455-2459.                                                             | 3.0  | 25        |
| 14 | Porous Ore Structure and Deposited Carbon Type during Integrated Pyrolysis–Tar Decomposition.<br>Energy & Fuels, 2014, 28, 2129-2134.                                                                                                  | 5.1  | 25        |
| 15 | Improved electrochemical properties of LiMn <sub>2</sub> O <sub>4</sub> with the Bi and La co-doping for lithium-ion batteries. RSC Advances, 2015, 5, 73315-73322.                                                                    | 3.6  | 24        |
| 16 | Surfactant-assisted synthesis of Sn nanoparticles via solution plasma technique. Advanced Powder<br>Technology, 2014, 25, 728-732.                                                                                                     | 4.1  | 23        |
| 17 | Glycine–nitrate-based solution-combustion synthesis of SrTiO3. Journal of Alloys and Compounds, 2015, 652, 496-502.                                                                                                                    | 5.5  | 23        |
| 18 | Size-Controlled Ni Nanoparticles Formation by Solution Glow Discharge. Journal of the Physical Society of Japan, 2010, 79, 083501.                                                                                                     | 1.6  | 21        |

**Genki** Saito

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Excitation temperature of a solution plasma during nanoparticle synthesis. Journal of Applied Physics, 2014, 116, 083301.                                                                                                             | 2.5 | 21        |
| 20 | A facile solution combustion synthesis of nanosized amorphous iron oxide incorporated in a carbon<br>matrix for use as a high-performance lithium ion battery anode material. Journal of Alloys and<br>Compounds, 2015, 633, 424-429. | 5.5 | 21        |
| 21 | Generation of solution plasma over a large electrode surface area. Journal of Applied Physics, 2015, 118, .                                                                                                                           | 2.5 | 21        |
| 22 | A New Route to Synthesize β-SiAlON:Eu2+Phosphors for White Light-Emitting Diodes. Applied Physics Express, 2013, 6, 042105.                                                                                                           | 2.4 | 20        |
| 23 | Synthesis of nonstoichiometric titanium oxide nanoparticles using discharge in HCl solution. Journal of Applied Physics, 2014, 115, .                                                                                                 | 2.5 | 20        |
| 24 | Solution plasma synthesis of Si nanoparticles. Nanotechnology, 2015, 26, 235602.                                                                                                                                                      | 2.6 | 18        |
| 25 | Formation of Different Si <sub>3</sub> N <sub>4</sub> Nanostructures by Salt-Assisted Nitridation.<br>ACS Applied Materials & Interfaces, 2018, 10, 11852-11861.                                                                      | 8.0 | 18        |
| 26 | Effects of Al particle size and nitrogen pressure on AlN combustion synthesis. Ceramics International, 2017, 43, 9872-9876.                                                                                                           | 4.8 | 17        |
| 27 | Optimization of the Dehydration Temperature of Goethite to Control Pore Morphology. ISIJ<br>International, 2016, 56, 1598-1605.                                                                                                       | 1.4 | 15        |
| 28 | Combustion synthesis of YAC:Ce phosphors via the thermite reaction of aluminum. Journal of Rare<br>Earths, 2018, 36, 248-256.                                                                                                         | 4.8 | 14        |
| 29 | Solution-Plasma-Mediated Synthesis of Si Nanoparticles for Anode Material of Lithium-Ion Batteries.<br>Nanomaterials, 2018, 8, 286.                                                                                                   | 4.1 | 14        |
| 30 | High-speed camera observation of solution plasma during nanoparticles formation. Applied Physics<br>Letters, 2014, 104, 083104.                                                                                                       | 3.3 | 13        |
| 31 | Three-dimensional analysis of Eu dopant atoms in Ca-α-SiAlON via through-focus HAADF-STEM imaging.<br>Ultramicroscopy, 2017, 175, 97-104.                                                                                             | 1.9 | 13        |
| 32 | Effects of Fine Precipitates on Austenite Grain Refinement of Micro-alloyed Steel during Cyclic Heat<br>Treatment. ISIJ International, 2019, 59, 2098-2104.                                                                           | 1.4 | 13        |
| 33 | Surface morphology of a glow discharge electrode in a solution. Journal of Applied Physics, 2012, 112, .                                                                                                                              | 2.5 | 12        |
| 34 | MnO nanocrystals incorporated in a N-containing carbon matrix for Li ion battery anodes. RSC<br>Advances, 2016, 6, 30445-30453.                                                                                                       | 3.6 | 12        |
| 35 | Atomic and Local Electronic Structures of Ca <sub>2</sub> AlMnO <sub>5+δ</sub> as an Oxygen<br>Storage Material. Chemistry of Materials, 2017, 29, 648-655.                                                                           | 6.7 | 12        |
| 36 | Salt-assisted combustion synthesis of Ca-α-SiAlON:Eu2+ phosphors. Journal of Alloys and Compounds, 2016, 681, 22-27.                                                                                                                  | 5.5 | 11        |

**Genki Saito** 

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ripple formation on a nickel electrode during a glow discharge in a solution. Applied Physics Letters, 2012, 100, 181601.                                                                                                                                  | 3.3 | 10        |
| 38 | Solution combustion synthesis of porous Sn–C composite as anode material for lithium ion batteries.<br>Advanced Powder Technology, 2016, 27, 1730-1737.                                                                                                    | 4.1 | 10        |
| 39 | Limonitic Laterite Ore as a Catalyst for the Dry Reforming of Methane. Energy & Fuels, 2016, 30, 8457-8462.                                                                                                                                                | 5.1 | 8         |
| 40 | Twin formation in hematite during dehydration of goethite. Physics and Chemistry of Minerals, 2016, 43, 749-757.                                                                                                                                           | 0.8 | 8         |
| 41 | Combustion synthesis of Ca-α-SiAlON:Eu2+ phosphors with different Ca concentrations and diluent ratios. Ceramics International, 2017, 43, 12396-12401.                                                                                                     | 4.8 | 7         |
| 42 | Combustion synthesis of AlN doped with carbon and oxygen. Journal of the American Ceramic Society, 2019, 102, 524-532.                                                                                                                                     | 3.8 | 7         |
| 43 | Effects of Concentrations of Micro-alloying Elements and Hot-forging Temperature on Austenite<br>Grain Structure Formed during Carburization of Case-hardening Steel. ISIJ International, 2020, 60,<br>2549-2557.                                          | 1.4 | 7         |
| 44 | Sr-Doped Ca <sub>2</sub> AlMnO <sub>5Â+Âδ</sub> for Energy-Saving Oxygen Separation Process. ACS<br>Sustainable Chemistry and Engineering, 2021, 9, 9317-9326.                                                                                             | 6.7 | 7         |
| 45 | Estimating the dopant distribution in Ca-doped α-SiAlON: statistical HAADF-STEM analysis and large-scale atomic modeling. Microscopy (Oxford, England), 2016, 65, 400-406.                                                                                 | 1.5 | 5         |
| 46 | Sr substitution effects on atomic and local electronic structure of<br>Ca <sub>2</sub> AlMnO <sub>5+Î</sub> . Surface and Interface Analysis, 2019, 51, 65-69.                                                                                             | 1.8 | 4         |
| 47 | Effects of Cooling Rate after Hot Forging on Precipitation of Fine Particles during Subsequent<br>Normalizing and Austenite Grain Growth during Carburization of Al- and Nb-microalloyed<br>Case-hardening Steel. ISIJ International, 2021, 61, 1964-1970. | 1.4 | 4         |
| 48 | Austenite memory during reverse transformation of steels at different heating rates. Materialia, 2019,<br>7, 100409.                                                                                                                                       | 2.7 | 3         |
| 49 | Crystalline Evaluation of Size-Controlled Silicon and Silicon Oxide Nanoparticles Produced by Solution Plasma Discharge. Materials Transactions, 2019, 60, 688-692.                                                                                        | 1.2 | 3         |
| 50 | In-situ observation of abnormal grain growth in a low-alloyed carbon steel using SEM-EBSD.<br>Materialia, 2021, 15, 100985.                                                                                                                                | 2.7 | 3         |
| 51 | Faster Generation of Nanoporous Hematite Ore through Dehydration of Goethite under Vacuum<br>Conditions. ISIJ International, 2021, 61, 493-497.                                                                                                            | 1.4 | 2         |
| 52 | Synthesis of AlN particles via direct nitridation in a drop tube furnace. Journal of the Ceramic Society of Japan, 2019, 127, 810-817.                                                                                                                     | 1.1 | 1         |
| 53 | Estimating the Spatial Distribution of Ca Dopants in α-SiAlON by Statistical Analysis of HAADF-STEM<br>Image. Materials Transactions, 2017, 58, 1341-1345.                                                                                                 | 1.2 | 0         |
| 54 | Precipitation Behavior of Combined Precipitates in Carbon Steels. Materia Japan, 2021, 60, 486-491.                                                                                                                                                        | 0.1 | 0         |

| #  | Article                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Solution Combustion Synthesis of Functional Powders. Journal of the Society of Powder Technology,<br>Japan, 2019, 56, 267-271. | 0.1 | 0         |