
Ming Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961339/publications.pdf Version: 2024-02-01

Микс Ми

#	Article	IF	CITATIONS
1	Repeated adaptation and de-adaptation to the pelvis resistance force facilitate retention of motor learning in stroke survivors. Journal of Neurophysiology, 2022, 127, 1642-1654.	0.9	1
2	Anodal transcutaneous DC stimulation enhances learning of dynamic balance control during walking in humans with spinal cord injury. Experimental Brain Research, 2022, 240, 1943-1955.	0.7	3
3	Gradual adaptation to pelvis perturbation during walking reinforces motor learning of weight shift toward the paretic side in individuals post-stroke. Experimental Brain Research, 2021, 239, 1701-1713.	0.7	8
4	Increased motor variability facilitates motor learning in weight shift toward the paretic side during walking in individuals postâ€stroke. European Journal of Neuroscience, 2021, 53, 3490-3506.	1.2	6
5	Enhanced error facilitates motor learning in weight shift and increases use of the paretic leg during walking at chronic stage after stroke. Experimental Brain Research, 2021, 239, 3327-3341.	0.7	6
6	Targeted Pelvic Constraint Force Induces Enhanced Use of the Paretic Leg During Walking in Persons Post-Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2184-2193.	2.7	9
7	Varied movement errors drive learning of dynamic balance control during walking in people with incomplete spinal cord injury: a pilot study. Experimental Brain Research, 2020, 238, 981-993.	0.7	3
8	Forced use of paretic leg induced by constraining the non-paretic leg leads to motor learning in individuals post-stroke. Experimental Brain Research, 2019, 237, 2691-2703.	0.7	11
9	Use of Pelvic Corrective Force With Visual Feedback Improves Paretic Leg Muscle Activities and Gait Performance After Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 2353-2360.	2.7	9
10	Error variability affects the after effects following motor learning of lateral balance control during walking in people with spinal cord injury. European Journal of Neuroscience, 2019, 50, 3221-3234.	1.2	6
11	Motor Adaptation to Weight Shifting Assistance Transfers to Overground Walking in People with Spinal Cord Injury. PM and R, 2019, 11, 1200-1209.	0.9	10
12	sEMG Based Gait Phase Recognition for Children with Spastic Cerebral Palsy. Annals of Biomedical Engineering, 2019, 47, 223-230.	1.3	11
13	Gradual increase of perturbation load induces a longer retention of locomotor adaptation in children with cerebral palsy. Human Movement Science, 2019, 63, 20-33.	0.6	15
14	Facilitating Weight Shifting During Treadmill Training Improves Walking Function in Humans With Spinal Cord Injury. American Journal of Physical Medicine and Rehabilitation, 2018, 97, 585-592.	0.7	13
15	Gait Symmetry Can Reduce Dependence on the Intact Limb during Walking with Constraint of Unilateral Metatarsophalangeal Joints. , 2018, 2018, 2300-2303.		1
16	Body-Weight-Supported Treadmill Walking Training Improves Functional Walking and Balance in Stroke Survivors at Any Poststroke Stage: A Systematic Review. Critical Reviews in Physical and Rehabilitation Medicine, 2018, 30, 303-322.	0.1	0
17	Combined Visual Feedback with Pelvic Assistance Force Improves Step Length during treadmill walking in Individuals with Post-Stroke Hemiparesis. , 2018, 2018, 2333-2336.		1
18	Design and Evaluation of a Wearable Powered Foot Orthosis with Metatarsophalangeal Joint. Applied Bionics and Biomechanics, 2018, 2018, 1-7.	0.5	8

Ming Wu

#	Article	IF	CITATIONS
19	Effects of Unilateral Restriction of the Metatarsophalangeal Joints on Biped Robot Walking. , 2018, , .		о
20	Robotic Resistance Treadmill Training Improves Locomotor Function in Children With Cerebral Palsy: A Randomized Controlled Pilot Study. Archives of Physical Medicine and Rehabilitation, 2017, 98, 2126-2133.	0.5	45
21	Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking. Clinical Neurophysiology, 2017, 128, 1915-1922.	0.7	28
22	Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking. Neurorehabilitation and Neural Repair, 2017, 31, 1042-1052.	1.4	22
23	Effects of the Integration of Dynamic Weight Shifting Training Into Treadmill Training on Walking Function of Children with Cerebral Palsy. American Journal of Physical Medicine and Rehabilitation, 2017, 96, 765-772.	0.7	35
24	Motor adaptation to lateral pelvis assistance force during treadmill walking in individuals post-stroke. , 2017, 2017, 300-303.		7
25	Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy. Neural Plasticity, 2016, 2016, 1-12.	1.0	15
26	Repeat Exposure to Leg Swing Perturbations During Treadmill Training Induces Long-Term Retention of Increased Step Length in Human SCI. American Journal of Physical Medicine and Rehabilitation, 2016, 95, 911-920.	0.7	20
27	Toward Flexible Assistance for Locomotor Training: Design and Clinical Testing of a Cable-Driven Robot for Stroke, Spinal Cord Injury, and Cerebral Palsy. , 2016, , 435-459.		1
28	Using swing resistance and assistance to improve gait symmetry in individuals post-stroke. Human Movement Science, 2015, 42, 212-224.	0.6	63
29	Locomotor training through a 3D cable-driven robotic system for walking function in children with cerebral palsy: A pilot study. , 2014, 2014, 3529-32.		5
30	Augmented multisensory feedback enhances locomotor adaptation in humans with incomplete spinal cord injury. Human Movement Science, 2014, 35, 80-93.	0.6	21
31	Robotic Resistance/Assistance Training Improves Locomotor Function in Individuals Poststroke: A Randomized Controlled Study. Archives of Physical Medicine and Rehabilitation, 2014, 95, 799-806.	0.5	49
32	Size of kinematic error affects retention of locomotor adaptation in human spinal cord injury. Journal of Rehabilitation Research and Development, 2013, 50, 1187-1200.	1.6	22
33	Robotic Resistance Treadmill Training Improves Locomotor Function in Human Spinal Cord Injury: A Pilot Study. Archives of Physical Medicine and Rehabilitation, 2012, 93, 782-789.	0.5	61
34	Locomotor adaptation to resistance during treadmill training transfers to overground walking in human SCI. Experimental Brain Research, 2012, 216, 473-482.	0.7	77
35	Lower Extremity Flexible Assist Devices for Locomotion. , 2012, , 361-378.		0
36	Prolonged electrical stimulation over hip flexors increases locomotor output in human SCI. Clinical Neurophysiology, 2011, 122, 1421-1428.	0.7	7

Ming Wu

#	Article	IF	CITATIONS
37	A cable-driven locomotor training system for restoration of gait in human SCI. Gait and Posture, 2011, 33, 256-260.	0.6	98
38	A novel cable-driven robotic training improves locomotor function in individuals post-stroke. , 2011, 2011, 8539-42.		7
39	Reflex responses to combined hip and knee motion in human chronic spinal cord injury. Journal of Rehabilitation Research and Development, 2010, 47, 117.	1.6	3
40	Feedback and Feedforward Locomotor Adaptations to Ankle-Foot Load in People With Incomplete Spinal Cord Injury. Journal of Neurophysiology, 2010, 104, 1325-1338.	0.9	23
41	Rebound responses to prolonged flexor reflex stimuli in human spinal cord injury. Experimental Brain Research, 2009, 193, 225-237.	0.7	5
42	Ankle Load Modulates Hip Kinetics and EMG During Human Locomotion. Journal of Neurophysiology, 2009, 101, 2062-2076.	0.9	26
43	Modulation of flexor reflexes by static and dynamic hip proprioceptors in chronic human spinal cord injury. Journal of Clinical Neuroscience, 2007, 14, 1078-1088.	0.8	12
44	The reaction strategy of lower extremity muscles when slips occur to individuals with trans-femoral amputation. Journal of Electromyography and Kinesiology, 2007, 17, 228-240.	0.7	18
45	Minimal step length necessary for recovery of forward balance loss with a single step. Journal of Biomechanics, 2007, 40, 1559-1566.	0.9	32
46	Spastic Reflexes Triggered by Ankle Load Release in Human Spinal Cord Injury. Journal of Neurophysiology, 2006, 96, 2941-2950.	0.9	17
47	Temporal facilitation of spastic stretch reflexes following human spinal cord injury. Journal of Physiology, 2006, 571, 593-604.	1.3	44
48	Flexor reflex responses triggered by imposed knee extension in chronic human spinal cord injury. Experimental Brain Research, 2006, 168, 566-576.	0.7	13
49	Extensor spasms triggered by imposed knee extension in chronic human spinal cord injury. Experimental Brain Research, 2005, 162, 239-249.	0.7	22