Yingguang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nature Communications, 2015, 6, 8340.	12.8	578
2	Visible-Light Driven Overall Conversion of CO ₂ and H ₂ O to CH ₄ and O ₂ on 3D-SiC@2D-MoS ₂ Heterostructure. Journal of the American Chemical Society, 2018, 140, 14595-14598.	13.7	361
3	Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism. Applied Catalysis B: Environmental, 2020, 274, 119063.	20.2	243
4	Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nature Communications, 2020, 11, 3043.	12.8	200
5	Nitrogen-doped titanium dioxide visible light photocatalyst: Spectroscopic identification of photoactive centers. Journal of Catalysis, 2010, 276, 201-214.	6.2	185
6	In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 233, 112-119.	20.2	181
7	BiVO4 /Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Applied Catalysis B: Environmental, 2020, 270, 118876.	20.2	179
8	Persian buttercup-like BiOBrxCl1-x solid solution for photocatalytic overall CO2 reduction to CO and O2. Applied Catalysis B: Environmental, 2019, 243, 734-740.	20.2	159
9	Surface oxygen vacancy and defect engineering of WO ₃ for improved visible light photocatalytic performance. Catalysis Science and Technology, 2018, 8, 4399-4406.	4.1	158
10	Enhanced visible-light-driven photocatalytic removal of NO: Effect on layer distortion on g-C3N4 by H2 heating. Applied Catalysis B: Environmental, 2015, 179, 106-112.	20.2	131
11	A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. Journal of Materials Chemistry A, 2019, 7, 17420-17425.	10.3	111
12	Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Applied Catalysis B: Environmental, 2019, 256, 117823.	20.2	95
13	Vacuum heat-treatment of carbon nitride for enhancing photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 17797-17807.	10.3	94
14	Intimately Contacted Ni2P on CdS Nanorods for Highly Efficient Photocatalytic H2 Evolution: New Phosphidation Route and the Interfacial Separation Mechanism of Charge Carriers. Applied Catalysis B: Environmental, 2021, 281, 119443.	20.2	90
15	Layered C ₃ N ₃ S ₃ Polymer/Graphene Hybrids as Metal-Free Catalysts for Selective Photocatalytic Oxidation of Benzylic Alcohols under Visible Light. ACS Catalysis, 2014, 4, 3302-3306.	11.2	89
16	Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2019, 243, 481-489.	20.2	86
17	Cul-BiOl/Cu film for enhanced photo-induced charge separation and visible-light antibacterial activity. Applied Catalysis B: Environmental, 2018, 235, 238-245.	20.2	85
18	Non-noble metal thickness-tunable Bi2MoO6 nanosheets for highly efficient visible-light-driven nitrobenzene reduction into aniline. Applied Catalysis B: Environmental, 2019, 259, 118087.	20.2	80

YINGGUANG ZHANG

#	Article	IF	CITATIONS
19	Openmouthed Î ² -SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O. Applied Catalysis B: Environmental, 2017, 206, 158-167.	20.2	79
20	Synthesis of caged iodine-modified ZnO nanomaterials and study on their visible light photocatalytic antibacterial properties. Applied Catalysis B: Environmental, 2019, 256, 117873.	20.2	79
21	Integrating single Ni sites into biomimetic networks of covalent organic frameworks for selective photoreduction of CO ₂ . Chemical Science, 2020, 11, 6915-6922.	7.4	78
22	The effect of halogen on BiOX (X = Cl, Br, I)/Bi2WO6 heterojunction for visible-light-driven photocatalytic benzyl alcohol selective oxidation. Applied Catalysis A: General, 2018, 567, 65-72.	4.3	75
23	Highâ€Rate, Tunable Syngas Production with Artificial Photosynthetic Cells. Angewandte Chemie - International Edition, 2019, 58, 7718-7722.	13.8	75
24	Trace Amount of SnO ₂ -Decorated ZnSn(OH) ₆ as Highly Efficient Photocatalyst for Decomposition of Gaseous Benzene: Synthesis, Photocatalytic Activity, and the Unrevealed Synergistic Effect between ZnSn(OH) ₆ and SnO ₂ . ACS Catalysis, 2016, 6, 957-968.	11.2	74
25	MnSb ₂ S ₄ Monolayer as an Anode Material for Metal-Ion Batteries. Chemistry of Materials, 2018, 30, 3208-3214.	6.7	74
26	Roomâ€Temperature Activation of H ₂ by a Surface Frustrated Lewis Pair. Angewandte Chemie - International Edition, 2019, 58, 9501-9505.	13.8	72
27	Robust Photocatalytic H2O2 Production by Octahedral Cd3(C3N3S3)2 Coordination Polymer under Visible Light. Scientific Reports, 2015, 5, 16947.	3.3	71
28	Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO ₂ . Physical Chemistry Chemical Physics, 2016, 18, 9636-9644.	2.8	68
29	Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10232-10237.	7.1	63
30	Ultrathin nanosheets of molecular sieve SAPO-5: A new photocatalyst for efficient photocatalytic reduction of CO 2 with H 2 O to methane. Applied Catalysis B: Environmental, 2016, 187, 11-18.	20.2	62
31	Heterojunction: important strategy for constructing composite photocatalysts. Science Bulletin, 2017, 62, 599-601.	9.0	57
32	<i>In situ</i> hydrothermal etching fabrication of CaTiO ₃ on TiO ₂ nanosheets with heterojunction effects to enhance CO ₂ adsorption and photocatalytic reduction. Catalysis Science and Technology, 2019, 9, 336-346.	4.1	56
33	Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation. Journal of Hazardous Materials, 2020, 399, 122967.	12.4	48
34	Controllable synthesis of Bi2WO6 nanoplate self-assembled hierarchical erythrocyte microspheres via a one-pot hydrothermal reaction with enhanced visible light photocatalytic activity. Applied Surface Science, 2017, 403, 326-334.	6.1	46
35	Freestanding single layers of non-layered material γ-Ga ₂ O ₃ as an efficient photocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 9702-9708.	10.3	46
36	PdSn/NiO/NaTaO3:La for photocatalytic ammonia synthesis by reduction of NO3â^ with formic acid in aqueous solution. Journal of Catalysis, 2018, 361, 303-312.	6.2	45

YINGGUANG ZHANG

#	Article	IF	CITATIONS
37	Photocatalytic reduction of CO2 to CO over the Ti–Highly dispersed HZSM-5 zeolite containing Fe. Applied Catalysis B: Environmental, 2017, 203, 725-730.	20.2	44
38	Reconstructing Dualâ€Induced {0 0 1} Facets Bismuth Oxychloride Nanosheets Heterostructures: An Effective Strategy to Promote Photocatalytic Oxygen Evolution. Solar Rrl, 2019, 3, 1900059.	5.8	44
39	Phase Transition of Two-Dimensional β-Ga ₂ O ₃ Nanosheets from Ultrathin γ-Ga ₂ O ₃ Nanosheets and Their Photocatalytic Hydrogen Evolution Activities. ACS Omega, 2018, 3, 14469-14476.	3.5	40
40	Simultaneous excitation of PdCl2 hybrid mesoporous g-C3N4 molecular/solid-state photocatalysts for enhancing the visible-light-induced oxidative removal of nitrogen oxides. Applied Catalysis B: Environmental, 2016, 184, 174-181.	20.2	39
41	More efficiently enhancing photocatalytic activity by embedding Pt within anatase–rutile TiO2 heterophase junction than exposing Pt on the outside surface. Journal of Catalysis, 2019, 372, 8-18.	6.2	37
42	Distortion of the Coordination Structure and High Symmetry of the Crystal Structure in In ₄ SnS ₈ Microflowers for Enhancing Visible-Light Photocatalytic CO ₂ Reduction. ACS Catalysis, 2021, 11, 11029-11039.	11.2	37
43	HZSM-5 zeolites containing impurity iron species for the photocatalytic reduction of CO ₂ with H ₂ O. Catalysis Science and Technology, 2016, 6, 7579-7585.	4.1	33
44	Monolayer Bi ₂ W _{1–<i>x</i>} Mo <i>_x</i> O ₆ Solid Solutions for Structural Polarity to Boost Photocatalytic Reduction of Nitrobenzene under Visible Light. ACS Sustainable Chemistry and Engineering, 2021, 9, 2465-2474.	6.7	32
45	Oxygen vacancy modulation of two-dimensional γ-Ga ₂ O ₃ nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale, 2018, 10, 21509-21517.	5.6	31
46	Probing the Electronic Structure and Photoactivation Process of Nitrogenâ€Doped TiO ₂ Using DRS, PL, and EPR. ChemPhysChem, 2012, 13, 1542-1550.	2.1	29
47	Metallic Pt and PtO ₂ Dual-Cocatalyst-Loaded Binary Composite RGO-CN <i>_x</i> for the Photocatalytic Production of Hydrogen and Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2021, 9, 6380-6389.	6.7	29
48	Rapid water disinfection over a Ag/AgBr/covalent triazine-based framework composite under visible light. Dalton Transactions, 2018, 47, 7077-7082.	3.3	24
49	Understanding structure-function relationships in HZSM-5 zeolite catalysts for photocatalytic oxidation of isopropyl alcohol. Journal of Catalysis, 2019, 377, 322-331.	6.2	21
50	One-step synthesis of mesoporous Pt–Nb ₂ O ₅ nanocomposites with enhanced photocatalytic hydrogen production activity. RSC Advances, 2016, 6, 96809-96815.	3.6	20
51	Large-scale preparation of heterometallic chalcogenide MnSb ₂ S ₄ monolayer nanosheets with a high visible-light photocatalytic activity for H ₂ evolution. Chemical Communications, 2016, 52, 13381-13384.	4.1	18
52	Roomâ€Temperature Activation of H ₂ by a Surface Frustrated Lewis Pair. Angewandte Chemie, 2019, 131, 9601-9605.	2.0	18
53	Regulation of the rutile/anatase TiO ₂ heterophase interface by Ni ₁₂ P ₅ to improve photocatalytic hydrogen evolution. Catalysis Science and Technology, 2020, 10, 3709-3719.	4.1	18
54	Simple Fabrication of SnO ₂ Quantumâ€dotâ€modified TiO ₂ Nanorod Arrays with High Photoelectrocatalytic Activity for Overall Water Splitting. ChemPhysChem, 2018, 19, 2717-2723.	2.1	16

#	Article	IF	CITATIONS
55	Towards a comprehensive insight into efficient hydrogen production by self-assembled Ru(bpy) ₃ ²⁺ –polymer–Pt artificial photosystems. Physical Chemistry Chemical Physics, 2015, 17, 10726-10736.	2.8	15
56	In situ construction of a heterojunction over the surface of a sandwich structure semiconductor for highly efficient photocatalytic H ₂ evolution under visible light irradiation. Nanoscale, 2017, 9, 14423-14430.	5.6	15
57	One-step green conversion of benzyl bromide to aldehydes on NaOH-modified g-C ₃ N ₄ with dioxygen under LED visible light. Catalysis Science and Technology, 2019, 9, 3270-3278.	4.1	15
58	Ranking the relative CO2 electrochemical reduction activity in carbon materials. Carbon, 2019, 154, 108-114.	10.3	14
59	Fabrication of 2H/3C-SiC heterophase junction nanocages for enhancing photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 622, 31-39.	9.4	14
60	Highâ€Rate, Tunable Syngas Production with Artificial Photosynthetic Cells. Angewandte Chemie, 2019, 131, 7800-7804.	2.0	12
61	Enhanced bacterial disinfection by Cul–BiOI/rGO hydrogel under visible light irradiation. RSC Advances, 2021, 11, 20446-20456.	3.6	11
62	The effect of excitation wavelength on the photodeposition of Pt on polyhedron BiVO4 with exposing {010} and {110} facets for photocatalytic performance. Catalysis Communications, 2019, 123, 100-104.	3.3	10
63	Construction of the Rutile/Anatase Micro-Heterophase Junction Photocatalyst from Anatase by Liquid Nitrogen Quenching Method. ACS Applied Energy Materials, 2021, 4, 10172-10186.	5.1	9
64	Photocatalytic Chlorination of Methane Using Alkali Chloride Solution. ACS Catalysis, 2022, 12, 7004-7013.	11.2	9
65	Sn ²⁺ and Cu ²⁺ Self-Codoped Cu ₂ ZnSnS ₄ Nanosheets Switching from p-Type to n-Type Semiconductors for Visible-Light-Driven CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 8825-8834.	6.7	9
66	Interim Anatase Coating Layer Stabilizes Rutile@Cr _{<i>x</i>} O _{<i>y</i>} Photoanode for Visibleâ€Lightâ€Driven Water Oxidation. ChemPhysChem, 2015, 16, 1352-1355.	2.1	8
67	Multimetal tantalate CsBi2Ta5O16 for photocatalytic conversion of CO2 with H2O into CH4 and O2. Applied Surface Science, 2022, 588, 152933.	6.1	8
68	Post-synthetic regulation of the structure, morphology and photoactivity of graphitic carbon nitride by heat-vacuum treatment. Materials and Design, 2017, 114, 208-213.	7.0	7
69	Controlling 1T/2H heterophase junctions in the MoS ₂ microsphere for the highly efficient photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 7914-7921.	4.1	4
70	Photochemistry of Nitrate Ion: Reduction by Formic Acid under UV Irradiation. Photochemistry and Photobiology, 2022, 98, 404-411.	2.5	2
71	AuPd nanoparticle-decorated ultrathin Bi ₂ TiO ₄ F ₂ sheets for photocatalytic methane oxidation. New Journal of Chemistry, 2022, 46, 10545-10549.	2.8	1