Luis Puelles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6960916/publications.pdf

Version: 2024-02-01

259 papers 19,923 citations

14614 66 h-index 128 g-index

267 all docs

 $\begin{array}{c} 267 \\ \text{docs citations} \end{array}$

times ranked

267

10402 citing authors

#	Article	IF	CITATIONS
1	Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage. Journal of Neuroscience, 2002, 22, 6309-6314.	1.7	1,173
2	Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. Journal of Comparative Neurology, 2000, 424, 409-438.	0.9	925
3	Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends in Neurosciences, 1993, 16, 472-479.	4.2	734
4	Forebrain gene expression domains and the evolving prosomeric model. Trends in Neurosciences, 2003, 26, 469-476.	4.2	679
5	Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt- 3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. Journal of Neuroscience, 1993, 13, 3155-3172.	1.7	554
6	The embryonic vertebrate forebrain: the prosomeric model. Science, 1994, 266, 578-580.	6.0	525
7	REGIONALIZATION OF THE PROSENCEPHALIC NEURAL PLATE. Annual Review of Neuroscience, 1998, 21, 445-477.	5.0	523
8	Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes. Journal of Neuroscience, 2007, 27, 9682-9695.	1.7	504
9	Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes and Development, 2003, 17, 368-379.	2.7	437
10	T-Brain-1: A homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron, 1995, 15, 63-78.	3.8	401
11	Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. Journal of Neuroscience, 1995, 15, 1012-1024.	1.7	286
12	Morphological Fate of Rhombomeres in Quail/Chick Chimeras: A Segmental Analysis of Hindbrain Nuclei. European Journal of Neuroscience, 1995, 7, 1714-1738.	1.2	280
13	DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation., 1999, 414, 217-237.		269
14	An anatomic gene expression atlas of the adult mouse brain. Nature Neuroscience, 2009, 12, 356-362.	7.1	264
15	Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos: I. Topography of ache-positive neuroblasts up to stage HH18. Journal of Comparative Neurology, 1987, 266, 247-268.	0.9	253
16	A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain. Neuron, 2014, 83, 309-323.	3.8	246
17	A developmental ontology for the mammalian brain based on the prosomeric model. Trends in Neurosciences, 2013, 36, 570-578.	4.2	229
18	Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamy gdaloid complex. Journal of Comparative Neurology, 2004, 474, 504-523.	0.9	221

#	Article	IF	Citations
19	Rostrocaudal nuclear relationships in the avian medulla oblongata: A fate map with quail chick chimeras. Journal of Comparative Neurology, 2000, 427, 522-545.	0.9	202
20	The mouse Dlx-2 (Tes-1) gene is expressed in spatially restricted domains of the forebrain, face and limbs in midgestation mouse embryos. Mechanisms of Development, 1993, 40, 129-140.	1.7	199
21	DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. Journal of Neuroscience, 1994, 14, 6370-6383.	1.7	198
22	Patterning of the Embryonic Avian Midbrain after Experimental Inversions: A Polarizing Activity from the Isthmus. Developmental Biology, 1994, 163, 19-37.	0.9	190
23	Expression Patterns of Two Murine Homologs of Drosophila Single-Minded Suggest Possible Roles in Embryonic Patterning and in the Pathogenesis of Down Syndrome. Molecular and Cellular Neurosciences, 1996, 7, 1-16.	1.0	187
24	A Segmental Morphological Paradigm for Understanding Vertebrate Forebrains (Part $1\ {\rm of}\ 2$). Brain, Behavior and Evolution, 1995, 46, 319-327.	0.9	181
25	Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. Journal of Comparative Neurology, 2008, 506, 46-74.	0.9	180
26	Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anatomy and Embryology, 1999, 199, 329-348.	1.5	177
27	Expression from a Dlx Gene Enhancer Marks Adult Mouse Cortical GABAergic Neurons. Cerebral Cortex, 2002, 12, 75-85.	1.6	172
28	Fate Map of the Avian Anterior Forebrain at the Four-Somite Stage, Based on the Analysis of Quail–Chick Chimeras. Developmental Biology, 2001, 239, 46-67.	0.9	168
29	Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1583-1598.	1.8	168
30	The Avian Telencephalic Subpallium Originates Inhibitory Neurons That Invade Tangentially the Pallium (Dorsal Ventricular Ridge and Cortical Areas). Developmental Biology, 2001, 239, 30-45.	0.9	166
31	A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Frontiers in Neuroanatomy, 2015, 9, 27.	0.9	165
32	Expression of the genesGAD67 and Distal-less-4 in the forebrain of Xenopus laevis confirms a common pattern in tetrapods. Journal of Comparative Neurology, 2003, 461, 370-393.	0.9	150
33	Brain segmentation and forebrain development in amniotes. Brain Research Bulletin, 2001, 55, 695-710.	1.4	145
34	Expression of the genesEmx1,Tbr1, andEomes (Tbr2) in the telencephalon ofXenopus laevis confirms the existence of a ventral pallial division in all tetrapods. Journal of Comparative Neurology, 2004, 474, 562-577.	0.9	145
35	Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mechanisms of Development, 1995, 51, 289-303.	1.7	140
36	Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mechanisms of Development, 1998, 70, 201-203.	1.7	129

#	Article	IF	CITATIONS
37	Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Research Bulletin, 2002, 57, 243-255.	1.4	125
38	Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development (Cambridge), 2002, 129, 761-773.	1.2	124
39	1 Homeobox Gene Expression during Development of the Vertebrate Brain. Current Topics in Developmental Biology, 1994, 29, 1-63.	1.0	121
40	A Segmental Map of Architectonic Subdivisions in the Diencephalon of the Frog <i>Rana perezi: </i> Acetylcholinesterase-Histochemical Observations; pp. 279–289. Brain, Behavior and Evolution, 1996, 47, 279-289.	0.9	121
41	Comparison of the Mammalian and Avian Telencephalon from the Perspective of Gene Expression Data. European Journal of Morphology, 1999, 37, 139-150.	1.4	118
42	Distribution of choline acetyltransferase immunoreactivity in the brain of the lizardGallotia galloti. Journal of Comparative Neurology, 1993, 331, 261-285.	0.9	113
43	Digital Atlasing and Standardization in the Mouse Brain. PLoS Computational Biology, 2011, 7, e1001065.	1.5	109
44	Early neuromeric distribution of tyrosine-hydroxylase-immunoreactive neurons in human embryos., 1998, 394, 283-308.		106
45	Morphologic fate of diencephalic prosomeres and their subdivisions revealed by mapping cadherin expression., 2000, 421, 481-514.		106
46	Expression of calcium-binding proteins in the diencephalon of the lizardPsammodromus algirus. Journal of Comparative Neurology, 2000, 427, 67-92.	0.9	105
47	Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Structure and Function, 2013, 218, 1229-1277.	1.2	101
48	Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. Journal of Comparative Neurology, 2001, 438, 253-285.	0.9	100
49	Transcriptional Regulation of Enhancers Active in Protodomains of the Developing Cerebral Cortex. Neuron, 2014, 82, 989-1003.	3.8	99
50	Modularity in vertebrate brain development and evolution. BioEssays, 2001, 23, 1100-1111.	1.2	98
51	Identification of the Anterior Nucleus of the Ansa Lenticularis in Birds as the Homolog of the Mammalian Subthalamic Nucleus. Journal of Neuroscience, 2000, 20, 6998-7010.	1.7	97
52	Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biology, 2017, 15, e2001573.	2.6	96
53	New subdivision schema for the avian torus semicircularis: Neurochemical maps in the chick. Journal of Comparative Neurology, 1994, 340, 98-125.	0.9	94
54	Cadherin expression in the retina and retinofugal pathways of the chicken embryo. , 1998, 396, 20-38.		93

#	Article	IF	Citations
55	Hypothalamus. , 2012, , 221-312.		93
56	Patterns of Gene Expression in the Neural Plate and Neural Tube Subdivide the Embryonic Forebrain into Transverse and Longitudinal Domains. Developmental Neuroscience, 1997, 19, 88-96.	1.0	91
57	Expression patterns of Wnt8b and Wnt7b in the chicken embryonic brain suggest a correlation with forebrain patterning centers and morphogenesis. Neuroscience, 2002, 113, 689-698.	1.1	91
58	Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus. Frontiers in Neuroanatomy, 2011 , 5 , 10 .	0.9	87
59	Assembly of the Auditory Circuitry by a Hox Genetic Network in the Mouse Brainstem. PLoS Genetics, 2013, 9, e1003249.	1.5	87
60	Conserved pattern of OTP-positive cells in the paraventricular nucleus and other hypothalamic sites of tetrapods. Brain Research Bulletin, 2008, 75, 231-235.	1.4	86
61	Fate map of the chicken neural plate at stage 4. Development (Cambridge), 2002, 129, 2807-2822.	1.2	83
62	Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon., 2000, 419, 96-121.		82
63	Concept of neural genoarchitecture and its genomic fundament. Frontiers in Neuroanatomy, 2012, 6, 47.	0.9	82
64	Postnatal development of calbindin and parvalbumin immunoreactivity in the thalamus of the rat. Developmental Brain Research, 1991, 58, 243-249.	2.1	80
65	Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Research Reviews, 2005, 49, 179-190.	9.1	80
66	A model of early molecular regionalization in the chicken embryonic pretectum. Journal of Comparative Neurology, 2007, 505, 379-403.	0.9	80
67	Selective early expression of the orphan nuclear receptor <i>Nr4a2</i> identifies the claustrum homolog in the avian mesopallium: Impact on sauropsidian/mammalian pallium comparisons. Journal of Comparative Neurology, 2016, 524, 665-703.	0.9	80
68	Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. Frontiers in Neuroanatomy, 2015, 9, 46.	0.9	79
69	Ontogeny of tyrosine hydroxylase mRNA expression in mid- and forebrain: Neuromeric pattern and novel positive regions. Developmental Dynamics, 2005, 234, 709-717.	0.8	76
70	Genoarchitectonic profile of developing nuclear groups in the chicken pretectum. Journal of Comparative Neurology, 2009, 517, 405-451.	0.9	74
71	Developmental gene expression in the mouse clarifies the organization of the claustrum and related endopiriform nuclei. Journal of Comparative Neurology, 2017, 525, 1499-1508.	0.9	74
72	A Golgi study on the early sequence of differentiation of ganglion cells in the chick embryo retina. Anatomy and Embryology, 1981, 161, 305-317.	1.5	71

#	Article	IF	CITATIONS
73	New and Old Thoughts on the Segmental Organization of the Forebrain in Lampreys. Brain, Behavior and Evolution, 2009, 74, 7-19.	0.9	70
74	Formation of cadherin-expressing brain nuclei in diencephalic alar plate divisions., 2000, 421, 461-480.		69
75	3 dimensional modelling of early human brain development using optical projection tomography. BMC Neuroscience, 2004, 5, 27.	0.8	69
76	Inverted (displaced) retinal amacrine cells and their embryonic development in the chick. Experimental Neurology, 1977, 56, 151-157.	2.0	66
77	Organization of the mouse dorsal thalamus based on topology, calretinin immnunostaining, and gene expression. Brain Research Bulletin, 2002, 57, 439-442.	1.4	66
78	Prenatal development of calbindin immunoreactivity in the dorsal thalamus of the rat. Neuroscience, 1992, 46, 135-147.	1.1	65
79	Early pretectal gene expression pattern shows a conserved anteroposterior tripartition in mouse and chicken. Brain Research Bulletin, 2008, 75, 295-298.	1.4	65
80	Differentiation of neuroblasts in the chick optic tectum up to eight days of incubation: A Golgi study. Neuroscience, 1978, 3, 307-325.	1.1	64
81	Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Developmental Biology, 2008, 323, 230-247.	0.9	63
82	Distribution of neuropeptide Y-like immunoreactivity in the brain of the lizardGallotia galloti. Journal of Comparative Neurology, 1992, 319, 387-405.	0.9	62
83	Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: Studies in chick and mouse embryos. Journal of Comparative Neurology, 2006, 496, 802-818.	0.9	62
84	Subpallial Enhancer Transgenic Lines: a Data and Tool Resource to Study Transcriptional Regulation of GABAergic Cell Fate. Neuron, 2016, 92, 59-74.	3.8	62
85	Pallio-Pallial Tangential Migrations and Growth Signaling: New Scenario for Cortical Evolution?. Brain, Behavior and Evolution, 2011, 78, 108-127.	0.9	61
86	Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features. Brain Structure and Function, 2016, 221, 815-838.	1.2	61
87	The Relationship between Rhombomeres and Vestibular Neuron Populations as Assessed in Quail–Chicken Chimeras. Developmental Biology, 1998, 202, 14-28.	0.9	60
88	Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. Journal of Comparative Neurology, 2001, 429, 22-44.	0.9	59
89	Survey of Midbrain, Diencephalon, and Hypothalamus Neuroanatomic Terms Whose Prosomeric Definition Conflicts With Columnar Tradition. Frontiers in Neuroanatomy, 2019, 13, 20.	0.9	59
90	Expression Patterns of Two Murine Homologs of Drosophila Single-Minded Suggest Possible Roles in Embryonic Patterning and in the Pathogenesis of Down Syndrome. Molecular and Cellular Neurosciences, 1996, 7, 519.	1.0	58

#	Article	IF	Citations
91	Gbx2 expression in the late embryonic chick dorsal thalamus. Brain Research Bulletin, 2002, 57, 435-438.	1.4	58
92	Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Structure and Function, 2016, 221, 2493-2510.	1.2	56
93	Incipient forebrain boundaries traced by differential gene expression and fate mapping in the chick neural plate. Developmental Biology, 2009, 335, 43-65.	0.9	55
94	Towards a New Neuromorphology. , 2016, , .		55
95	Comments on the Updated Tetrapartite Pallium Model in the Mouse and Chick, Featuring a Homologous Claustro-Insular Complex. Brain, Behavior and Evolution, 2017, 90, 171-189.	0.9	55
96	Towards a Terminologia Neuroanatomica. Clinical Anatomy, 2017, 30, 145-155.	1.5	55
97	Do oculomotor neuroblasts migrate across the midline in the fetal rat brain?. Anatomy and Embryology, 1977, 150, 187-206.	1.5	54
98	Concentric ring topology of mammalian cortical sectors and relevance for patterning studies. Journal of Comparative Neurology, 2019, 527, 1731-1752.	0.9	54
99	Time for Radical Changes in Brain Stem Nomenclature—Applying the Lessons From Developmental Gene Patterns. Frontiers in Neuroanatomy, 2019, 13, 10.	0.9	53
100	Development of catecholamine systems in the brain of the lizard Gallotia galloti. Journal of Comparative Neurology, 1994, 350, 41-62.	0.9	51
101	In search of common developmental and evolutionary origin of the claustrum and subplate. Journal of Comparative Neurology, 2020, 528, 2956-2977.	0.9	51
102	Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development (Cambridge), 2002, 129, 761-73.	1.2	51
103	A Golgi-Study of oculomotor neuroblasts migrating across the midline in chick embryos. Anatomy and Embryology, 1978, 152, 205-215.	1.5	50
104	Mouse <i>Fgf8</i> â€Creâ€LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. Journal of Comparative Neurology, 2017, 525, 2782-2799.	0.9	50
105	Neurogenetic Compartments of the Mouse Diencephalon and some Characteristic Gene Expression Patterns. Results and Problems in Cell Differentiation, 2000, 30, 91-106.	0.2	50
106	Importance of Immunological and Inflammatory Processes in the Pathogenesis and THERAPY of Alzheimer's Disease. International Journal of Neuroscience, 1998, 95, 203-236.	0.8	49
107	Molecular profiling indicates avian branchiomotor nuclei invade the hindbrain alar plate. Neuroscience, 2004, 128, 785-796.	1.1	49
108	Distal-less-like protein distribution in the larval lamprey forebrain. Neuroscience, 2011, 178, 270-284.	1.1	47

#	Article	lF	Citations
109	Embryonic genoarchitecture of the pretectum in Xenopus laevis: A conserved pattern in tetrapods. Journal of Comparative Neurology, 2011, 519, 1024-1050.	0.9	47
110	Radial derivatives of the mouse ventral pallium traced with Dbx1-LacZ reporters. Journal of Chemical Neuroanatomy, 2016, 75, 2-19.	1.0	47
111	USP25, a Novel Gene Encoding a Deubiquitinating Enzyme, Is Located in the Gene-Poor Region 21q11.2. Genomics, 1999, 62, 395-405.	1.3	46
112	Autoradiographic and Golgi study on the early development of n. isthmi principalis and adjacent grisea in the chick embryo: a tridimensional viewpoint. Anatomy and Embryology, 1987, 176, 19-34.	1.5	45
113	The relationship between hodological and cytoarchitectonic organization in the vestibular complex of the 11-day chicken embryo. Journal of Comparative Neurology, 2003, 457, 87-105.	0.9	45
114	Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus. Frontiers in Neuroanatomy, 2014, 8, 162.	0.9	45
115	Acetylcholinesterase-histochemical differential staining of subdivisions within the nucleus rotundus in the chick. Anatomy and Embryology, 1990, 181, 129-35.	1.5	44
116	Comparative functional analysis provides evidence for a crucial role for the homeobox gene ⟨i⟩Nkx2.1⟨ i⟩⟨ci⟩Titfâ€1⟨ i⟩ in forebrain evolution. Journal of Comparative Neurology, 2008, 506, 211-223.	0.9	44
117	A distinct preisthmic histogenetic domain is defined by overlap of Otx2 and Pax2 gene expression in the avian caudal midbrain. Journal of Comparative Neurology, 2005, 483, 17-29.	0.9	43
118	Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area. Brain Structure and Function, 2016, 221, 3027-3065.	1.2	42
119	Location of the rostral end of the longitudinal brain axis: Review of an old topic in the light of marking experiments on the closing rostral neuropore. Journal of Morphology, 1987, 194, 163-171.	0.6	41
120	Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Structure and Function, 2014, 219, 1083-1111.	1.2	41
121	The lacteridian reticular thalamic nucleus projects topographically upon the dorsal thalamus: Experimental study inGallotia galloti. Journal of Comparative Neurology, 1994, 343, 193-208.	0.9	40
122	Id gene expression during development and molecular cloning of the human Id-1 gene. Molecular Brain Research, 1995, 30, 312-326.	2.5	40
123	The HUDSEN Atlas: a threeâ€dimensional (3D) spatial framework for studying gene expression in the developing human brain. Journal of Anatomy, 2010, 217, 289-299.	0.9	40
124	Evolutionarily conserved A-to-I editing increases protein stability of the alternative splicing factor <i>Nova1</i> . RNA Biology, 2012, 9, 12-21.	1.5	40
125	Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Developmental Biology, 2012, 361, 12-26.	0.9	40
126	Early mammillary pouch specification in the course of prechordal ventralization of the forebrain tegmentum. Developmental Biology, 2008, 320, 366-377.	0.9	39

#	Article	IF	CITATIONS
127	Gene Maps and Related Histogenetic Domains in the Forebrain and Midbrain. , 2004, , 3-25.		38
128	Development and Evolution of the Claustrum. , 2014, , 119-176.		38
129	Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Structure and Function, 2014, 219, 777-792.	1.2	37
130	Observations on the fate of nucleus superficialis magnocellularis of Rendahl in the avian diencephalon, bearing on the organization and nomenclature of neighboring retinorecipient nuclei. Anatomy and Embryology, 1991, 183, 221-33.	1.5	36
131	Expression patterns of developmental regulatory genes show comparable divisions in the telencephalon of Xenopus and mouse: insights into the evolution of the forebrain. Brain Research Bulletin, 2005, 66, 297-302.	1.4	36
132	Anatomical and gene expression mapping of the ventral pallium in a three-dimensional model of developing human brain. Neuroscience, 2005, 136, 625-632.	1.1	36
133	Diencephalon. , 2012, , 313-336.		35
134	A Re-evaluation of the Anatomy of the Claustrum in Rodents and Primatesâ€"Analyzing the Effect of Pallial Expansion. Frontiers in Neuroanatomy, 2019, 13, 34.	0.9	35
135	Two modes of free migration of amacrine cell neuroblasts in the chick retina. Anatomy and Embryology, 1987, 175, 281-287.	1.5	34
136	Cytoarchitectonic subdivisions in the subtectal midbrain of the lizard Gallotia galloti. Journal of Neurocytology, 2000, 29, 569-593.	1.6	34
137	Cerebrospinal fluid alterations of the serotonin product, 5â€hydroxyindolacetic acid, in neurological disorders. Journal of Inherited Metabolic Disease, 2010, 33, 803-809.	1.7	34
138	Dynamic mRNA distribution pattern of thyroid hormone transporters and deiodinases during early embryonic chicken brain development. Neuroscience, 2012, 221, 69-85.	1.1	34
139	Developmental studies of avian brain organization. International Journal of Developmental Biology, 2018, 62, 207-224.	0.3	33
140	Calretinin in pretecto- and olivocerebellar projections in the chick: Immunohistochemical and experimental study., 1998, 397, 149-162.		32
141	Afferent Connections of the Habenular Complex in the Lizard <i>Gallotia galloti</i> Brain, Behavior and Evolution, 1992, 39, 312-324.	0.9	31
142	The avian inferior olive derives from the alar neuroepithelium of the rhombomeres 7 and 8. NeuroReport, 1996, 7, 1285-1288.	0.6	30
143	The telencephalon of the frog Xenopus based on calretinin immunostaining and gene expression patterns. Brain Research Bulletin, 2002, 57, 381-384.	1.4	30
144	Midbrain. , 2012, , 337-359.		30

#	Article	IF	Citations
145	Tangential neuronal migration in the avian tectum: cell type identification and mapping of regional differences with quail/chick homotopic transplants. Developmental Brain Research, 1992, 66, 153-163.	2.1	29
146	Chicken lateral septal organ and other circumventricular organs form in a striatal subdomain abutting the molecular striatopallidal border. Journal of Comparative Neurology, 2006, 499, 745-767.	0.9	29
147	Comparison of Pretectal Genoarchitectonic Pattern between Quail and Chicken Embryos. Frontiers in Neuroanatomy, 2011, 5, 23.	0.9	29
148	Mesencephalic and diencephalic afferent connections to the thalamic nucleus rotundus in the lizard, Psammodromus algirus. European Journal of Neuroscience, 2002, 16, 267-282.	1.2	27
149	Ontogenetic expression of Sonic Hedgehog in the chicken subpallium. Frontiers in Neuroanatomy, 2010, 4, .	0.9	27
150	<i>Meis</i> gene expression patterns in the developing chicken inner ear. Journal of Comparative Neurology, 2011, 519, 125-147.	0.9	27
151	Sharpening of the anterior neural border in the chick by rostral endoderm signalling. Development (Cambridge), 2012, 139, 1034-1044.	1.2	27
152	Nuclear derivatives and axonal projections originating from rhombomere 4 in the mouse hindbrain. Brain Structure and Function, 2017, 222, 3509-3542.	1.2	27
153	Chicken Nkx6.1 expression at advanced stages of development identifies distinct brain nuclei derived from the basal plate. Mechanisms of Development, 2001, 102, 279-282.	1.7	26
154	The avian griseum tectale: cytoarchitecture, NOS expression and neurogenesis. Brain Research Bulletin, 2002, 57, 353-357.	1.4	26
155	3D modelling, gene expression mapping and post-mapping image analysis in the developing human brain. Brain Research Bulletin, 2005, 66, 449-453.	1.4	26
156	Molecular Regionalization of the Developing Neural Tube. , 2012, , 2-18.		26
157	Early Postembryonic Neural Development in the Zebrafish: A 3-D Reconstruction of Forebrain Proliferation Zones Shows their Relation to Prosomeres. European Journal of Morphology, 1999, 37, 117-121.	1.4	26
158	OL-protocadherin expression in the visual system of the chicken embryo. Journal of Comparative Neurology, 2004, 470, 240-255.	0.9	25
159	Patterned Vascularization of Embryonic Mouse Forebrain, and Neuromeric Topology of Major Human Subarachnoidal Arterial Branches: A Prosomeric Mapping. Frontiers in Neuroanatomy, 2019, 13, 59.	0.9	24
160	The Pretectal Complex of the Rabbit: Distribution of Acetylcholinesterase and Reduced Nicotinamide Adenine Dinucleotide Diaphorase Activities. Cells Tissues Organs, 1992, 144, 7-16.	1.3	23
161	Morphological and molecular analysis of the early developing chick requires an expanded series of primitive streak stages. Journal of Morphology, 2005, 264, 105-116.	0.6	23
162	Correlation of a chicken stage 4 neural plate fate map with early gene expression patterns. Brain Research Reviews, 2005, 49, 167-178.	9.1	23

#	Article	IF	Citations
163	<scp>LacZâ€reporter mapping of</scp> <i>Dlx5</i> / <i>6</i> <scp>expression and genoarchitectural analysis of the postnatal mouse prethalamus</scp> . Journal of Comparative Neurology, 2021, 529, 367-420.	0.9	23
164	Multiple binge alcohol consumption during rat adolescence increases anxiety but does not impair retention in the passive avoidance task. Neuroscience Letters, 2004, 357, 79-82.	1.0	22
165	Expression of antizyme inhibitor 2 in male haploid germinal cells suggests a role in spermiogenesis. International Journal of Biochemistry and Cell Biology, 2009, 41, 1070-1078.	1.2	22
166	Distinct and redundant expression and transcriptional diversity of <i>MEIS</i> gene paralogs during chicken development. Developmental Dynamics, 2011, 240, 1475-1492.	0.8	21
167	Developmental Genes and Malformations in the Hypothalamus. Frontiers in Neuroanatomy, 2020, 14, 607111.	0.9	21
168	Patch/matrix patterns of gray matter differentiation in the telencephalon of chicken and mouse. Brain Research Bulletin, 2002, 57, 489-493.	1.4	20
169	A radial histogenetic model of the mouse pallial amygdala. Brain Structure and Function, 2020, 225, 1921-1956.	1.2	20
170	Exploring Brain Genoarchitecture by Single and Double Chromogenic In Situ Hybridization (ISH) and Immunohistochemistry (IHC) on Cryostat, Paraffin, or Floating Sections. Neuromethods, 2015, , 83-107.	0.2	20
171	Gene expression analysis of developing cell groups in the pretectal region of <i>Xenopus laevis</i> Journal of Comparative Neurology, 2017, 525, 715-752.	0.9	19
172	Fate map of the chicken neural plate at stage 4. Development (Cambridge), 2002, 129, 2807-22.	1.2	19
173	<i>In vitro </i> HRP-Labeling of the Fasciculus Retroflexus in the Lizard <i>Gallotia galloti</i> Behavior and Evolution, 1992, 39, 305-311.	0.9	18
174	$\mbox{\sc i} \mbox{\sc Fgf10} \mbox{\sc /i} \mbox{\sc expression}$ patterns in the developing chick inner ear. Journal of Comparative Neurology, 2013, 521, 1136-1164.	0.9	18
175	Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus. Frontiers in Neuroanatomy, 2015, 9, 34.	0.9	18
176	Sim1-expressing cells illuminate the origin and course of migration of the nucleus of the lateral olfactory tract in the mouse amygdala. Brain Structure and Function, 2021, 226, 519-562.	1.2	18
177	Plurisegmental vestibulocerebellar projections and other hindbrain cerebellar afferents in midterm chick embryos: biotinylated dextranamine experiments in vitro. Neuroscience, 2003, 117, 71-82.	1.1	17
178	In vivo characterization of the Nkx2.1 promoter/enhancer elements in transgenic mice. Gene, 2004, 331, 73-82.	1.0	17
179	<i>Enc1</i> expression in the chick telencephalon at intermediate and late stages of development. Journal of Comparative Neurology, 2009, 517, 564-580.	0.9	17
180	A novel <i>TaulacZ</i> allele reveals a requirement for <i>Pitx2</i> in formation of the mammillothalamic tract. Genesis, 2012, 50, 67-73.	0.8	17

#	Article	IF	Citations
181	Origin and early development of the chicken adenohypophysis. Frontiers in Neuroanatomy, 2015, 9, 7.	0.9	17
182	Contributions to Neuroembryology of Santiago Ramon y Cajal (1852-1934) and Jorge F. Tello (1880-1958). International Journal of Developmental Biology, 2009, 53, 1145-1160.	0.3	16
183	Contrasting 5' and 3' Evolutionary Histories and Frequent Evolutionary Convergence in Meis/hth Gene Structures. Genome Biology and Evolution, 2011, 3, 551-564.	1.1	16
184	Longitudinal developmental analysis of prethalamic eminence derivatives in the chick by mapping of Tbr1 in situ expression. Brain Structure and Function, 2020, 225, 481-510.	1.2	16
185	Retinal and tectal connections of embryonic nucleus superficialis magnocellularis and its mature derivatives in the chick. Anatomy and Embryology, 1991, 183, 235-43.	1.5	15
186	Reciprocal connections between the rabbit suprageniculate pretectal nucleus and the superior colliculus: Tracer study with horseradish peroxidase and fluorogold. Visual Neuroscience, 1994, 11, 347-353.	0.5	15
187	Expression of Lrrn1 marks the prospective site of the zona limitans thalami in the early embryonic chicken diencephalon. Gene Expression Patterns, 2006, 6, 879-885.	0.3	15
188	<i>Raldh3</i> gene expression pattern in the developing chicken inner ear. Journal of Comparative Neurology, 2009, 514, 49-65.	0.9	15
189	Expression patterns of Irx genes in the developing chick inner ear. Brain Structure and Function, 2017, 222, 2071-2092.	1.2	15
190	Comments on the limits and internal structure of the mammalian midbrain. Anatomy, 2016, 10, 60-70.	0.2	15
191	Single cell enhancer activity distinguishes GABAergic and cholinergic lineages in embryonic mouse basal ganglia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2108760119.	3.3	15
192	Recollections on the Origins and Development of the Prosomeric Model. Frontiers in Neuroanatomy, 2021, 15, 787913.	0.9	15
193	Origin and plasticity of the subdivisions of the inferior olivary complex. Developmental Biology, 2012, 371, 215-226.	0.9	14
194	Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear. Brain Structure and Function, 2017, 222, 131-149.	1.2	14
195	Solitary magnocellular neurons in the avian optic tectum: cytoarchitectonic, histochemical and [3H]thymidine autoradiographic characterization. Neuroscience Letters, 1987, 74, 31-36.	1.0	13
196	The locus of optic nerve head representation in the retinotopic projection over nucleus geniculatus lateralis ventralis and nucleus griseum tectalis in the chick also lacks a retinal projection. Neuroscience Letters, 1988, 85, 35-39.	1.0	13
197	Acetylcholinesterase and NADH-diaphorase chemoarchitectonic subdivisions in the rabbit medial geniculate body. Journal of Chemical Neuroanatomy, 1991, 4, 271-280.	1.0	13
198	Fate map of the chicken otic placode. Development (Cambridge), 2014, 141, 2302-2312.	1.2	13

#	Article	IF	CITATIONS
199	The Postmigratory Alar Topography of Visceral Cranial Nerve Efferents Challenges the Classical Model of Hindbrain Columns. Anatomical Record, 2019, 302, 485-504.	0.8	13
200	A neural plate fate map at stage HH4 in the chick: methodology and preliminary data. Brain Research Bulletin, 2002, 57, 293-295.	1.4	12
201	Neuronal differentiation patterns in the optic tectum of the lizard Gallotia galloti. Brain Research, 2003, 975, 48-65.	1.1	12
202	An exercise in brain genoarchitectonics: Analysis of AZIN2â€Lacz expressing neuronal populations in the mouse hindbrain. Journal of Neuroscience Research, 2018, 96, 1490-1517.	1.3	12
203	Histogenetic Radial Models as Aids to Understanding Complex Brain Structures: The Amygdalar Radial Model as a Recent Example. Frontiers in Neuroanatomy, 2020, 14, 590011.	0.9	12
204	Avian nucleus isthmi ventralis projects to the contralateral optic tectum. Brain Research, 1989, 481, 181-184.	1.1	11
205	Golgi study of the anterior dorsal ventricular ridge in a lizard. I. neuronal typology in the adult. Journal of Morphology, 1990, 203, 293-300.	0.6	11
206	Patterning signals acting in the spinal cord override the organizing activity of the isthmus. Mechanisms of Development, 1999, 84, 41-53.	1.7	11
207	EphA7 receptor is expressed differentially at chicken prosomeric boundaries. Neuroscience, 2006, 141, 1887-1897.	1.1	11
208	Gene Maps and Related Histogenetic Domains in the Forebrain and Midbrain. , 2015, , 3-24.		11
209	Development of the mouse anterior amygdalar radial unit marked by Lhx9-expression. Brain Structure and Function, 2021, 226, 575-600.	1.2	11
210	Comparative Mapping of Acetylcholinesterase and Reduced Nicotinamide Adenine Dinucleotide Diaphorase in the Rabbit Dorsal Thalamus. Cells Tissues Organs, 1991, 140, 224-235.	1.3	10
211	Agreement and disagreement among fate maps of the chick neural plate. Brain Research Reviews, 2005, 49, 191-201.	9.1	10
212	Editorial: Development of the hypothalamus. Frontiers in Neuroanatomy, 2015, 9, 83.	0.9	10
213	Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1., 2000, 424, 409.		10
214	Forebrain. , 2002, , 299-315.		10
215	Pallial expression of Enc1 RNA in postnatal mouse telencephalon. Brain Research Bulletin, 2005, 66, 445-448.	1.4	9
216	Verapamil prevents, in a dose-dependent way, the loss of ChAT-immunoreactive neurons in the cerebral cortex following lesions of the rat nucleus basalis magnocellularis. Experimental Brain Research, 2006, 170, 368-375.	0.7	9

#	Article	IF	Citations
217	Segmental Analysis of the Vestibular Nerve and the Efferents of the Vestibular Complex. Anatomical Record, 2019, 302, 472-484.	0.8	9
218	Current Status of the Hypothesis of a Claustro-Insular Homolog in Sauropsids. Brain, Behavior and Evolution, 2022, 96, 212-241.	0.9	9
219	Lessons from Amphioxus Bauplan About Origin of Cranial Nerves of Vertebrates That Innervates Extrinsic Eye Muscles. Anatomical Record, 2019, 302, 452-462.	0.8	8
220	Prosomeric classification of retinorecipient centers: a new causal scenario. Brain Structure and Function, 2022, 227, 1171-1193.	1.2	8
221	Velate glioblasts in the developing chick optic tectum: Probable immature forms of oligodendroglia. Neuroscience, 1978, 3, 41-47.	1.1	7
222	Cyclic nucleotide-gated cation channel expression in embryonic chick brain. Molecular Brain Research, 1999, 66, 175-178.	2.5	7
223	The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain. Nature Precedings, 2009, , .	0.1	7
224	Salient brain entities labelled in P2rx7-EGFP reporter mouse embryos include the septum, roof plate glial specializations and circumventricular ependymal organs. Brain Structure and Function, 2021, 226, 715-741.	1.2	7
225	Exploring Brain Genoarchitecture by Single and Double Chromogenic In Situ Hybridization (ISH) and Immunohistochemistry (IHC) in Whole-Mount Embryos. Neuromethods, 2015, , 61-82.	0.2	7
226	In silico identification of new candidate genes for hereditary congenital facial paresis. International Journal of Developmental Neuroscience, 2011, 29, 451-460.	0.7	6
227	Quail-chick grafting experiments corroborate that Tbr1-positive eminential prethalamic neurons migrate along three streams into hypothalamus, subpallium and septocommissural areas. Brain Structure and Function, 2021, 226, 759-785.	1.2	6
228	Tangential Intrahypothalamic Migration of the Mouse Ventral Premamillary Nucleus and Fgf8 Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 676121.	1.8	6
229	Diencephalic Neuronal Populations Projecting Axons into the Basal Plate in a Lizard (Gallotia galloti). European Journal of Morphology, 1999, 37, 130-133.	1.4	6
230	Is There a Prechordal Region and an Acroterminal Domain in Amphioxus?. Brain, Behavior and Evolution, 2022, 96, 334-352.	0.9	6
231	Neurogenetic Heterochrony in Chick, Lizard, and Rat Mapped with Wholemount Acetylcholinesterase and the Prosomeric Model. Brain, Behavior and Evolution, 2022, 97, 48-82.	0.9	6
232	Prosomeric Hypothalamic Distribution of Tyrosine Hydroxylase Positive Cells in Adolescent Rats. Frontiers in Neuroanatomy, 2022, 16, .	0.9	6
233	The locus of optic nerve head representation in the chick retinotectal map lacks a retinal projection. Neuroscience Letters, 1987, 79, 23-28.	1.0	5
234	Golgi study of the anterior dorsal ventricular ridge in a lizard. II. Neuronal cytodifferentiation. Journal of Morphology, 1990, 203, 301-310.	0.6	5

#	Article	IF	Citations
235	Intertectal commissural projection in the lizardGallotia stehlini: Origin and midline topography. Journal of Comparative Neurology, 1996, 366, 360-369.	0.9	5
236	Neuronal typology of the thalamic area triangularis of Gallotia galloti (reptilia, sauria). Journal of Morphology, 1990, 205, 113-121.	0.6	4
237	A Segmental Morphological Paradigm for Understanding Vertebrate Forebrains (Part 2 of 2). Brain, Behavior and Evolution, 1995, 46, 328-337.	0.9	4
238	NADPH-diaphorase activity in the frontal cortex of NBM-lesioned rats treated with verapamil. Neuroscience Research Communications, 2001, 28, 115-122.	0.2	4
239	Adaptive Function and Brain Evolution. Frontiers in Neuroanatomy, 2012, 6, 17.	0.9	4
240	Multiple Regionalized Genes and Their Putative Networks in the Interpeduncular Nucleus Suggest Complex Mechanisms of Neuron Development and Axon Guidance. Frontiers in Neuroanatomy, 2021, 15, 643320.	0.9	4
241	The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain. Nature Precedings, 0, , .	0.1	4
242	Monosodium glutamate induced convulsions in rats: Influence of route of administration, temperature and age. Amino Acids, 1991, 1, 81-89.	1.2	3
243	A Segmental Map of Architectonic Subdivisions in the Diencephalon of the Frog <i>Rana perezi: </i> Acetylcholinesterase-Histochemical Observations; pp. 290–300. Brain, Behavior and Evolution, 1996, 47, 290-300.	0.9	3
244	Origin of acoustic–vestibular ganglionic neuroblasts in chick embryos and their sensory connections. Brain Structure and Function, 2019, 224, 2757-2774.	1.2	3
245	Editorial: Recent Developments in Neuroanatomical Terminology. Frontiers in Neuroanatomy, 2019, 13, 80.	0.9	3
246	Neuronal differentiation in the thalamic area triangularis of a lizard. Journal of Morphology, 1990, 205, 123-134.	0.6	2
247	A Segmental Map of Architectonic Subdivisions in the Diencephalon of the Frog <i>Rana perezi: ⟨/i>Acetylcholinesterase-Histochemical Observations; pp. 301–310. Brain, Behavior and Evolution, 1996, 47, 301-310.</i>	0.9	2
248	Effect of acute verapamil treatment on body temperature in nucleus basalis magnocellularis-lesioned rats. Neuroscience Research Communications, 1998, 23, 181-187.	0.2	2
249	Neuromeric Landmarks in the Rat Midbrain, Diencephalon and Hypothalamus, Compared with Acetylcholinesterase Histochemistry., 2015,, 25-43.		2
250	Netrin-1/DCC Signaling Differentially Regulates the Migration of Pax7, Nkx6.1, Irx2, Otp, and Otx2 Cell Populations in the Developing Interpeduncular Nucleus. Frontiers in Cell and Developmental Biology, 2020, 8, 588851.	1.8	2
251	DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. , 1999, 414, 217.		2
252	Molecular Segmentation of the Spinal Trigeminal Nucleus in the Adult Mouse Brain. Frontiers in Neuroanatomy, 2021, 15, 785840.	0.9	2

Luis Puelles

#	ARTICLE	IF	CITATIONS
253	Hyperthermia and the neurotoxicity of exogenous glutamate in infant rats. Neurochemistry International, 1985, 7, 237-242.	1.9	1
254	Atlas of prenatal rat brain development. Trends in Neurosciences, 1996, 19, 116-117.	4.2	1
255	A chemoarchitectonically similar internal extension connects the rabbit intergeniculate leaflet to midline dorsal thalamaic nuclei. Journal Fýr Hirnforschung, 1993, 34, 35-42.	0.0	1
256	Introduction to the Proceedings of the Fourth European Conference on Comparative Neurobiology: Evolution and Development of Nervous Systems. Brain Research Bulletin, 2005, 66, 269.	1.4	0
257	Quantitative analysis of neural plate thickness and cell density during gastrulation in the chick embryo. Brain Research Bulletin, 2008, 75, 310-313.	1.4	0
258	Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. Journal of Comparative Neurology, 2017, 525, spc1-spc1.	0.9	0
259	Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum. Journal of Comparative Neurology, 2022, 530, 553-573.	0.9	0