Sivaraj Sivaramakrishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6960912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular chirality arising from the self-organization of the actin cytoskeleton. Nature Cell Biology, 2015, 17, 445-457.	10.3	350
2	Principles of Unconventional Myosin Function and Targeting. Annual Review of Cell and Developmental Biology, 2011, 27, 133-155.	9.4	147
3	Optical Mapping of cAMP Signaling at the Nanometer Scale. Cell, 2020, 182, 1519-1530.e17.	28.9	125
4	Long single α-helical tail domains bridge the gap between structure and function of myosin VI. Nature Structural and Molecular Biology, 2008, 15, 591-597.	8.2	109
5	Mathematical Modeling of Iron and Steel Making Processes. Comparison of Four Methods to Evaluate Fluid Velocities in a Continuous Slab Casting Mold ISIJ International, 2001, 41, 1262-1271.	1.4	106
6	Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nature Reviews Molecular Cell Biology, 2010, 11, 128-137.	37.0	100
7	Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab on A Chip, 2013, 13, 2679.	6.0	98
8	Dynamic charge interactions create surprising rigidity in the ER/K α-helical protein motif. Proceedings of the United States of America, 2008, 105, 13356-13361.	7.1	94
9	Micromechanical properties of keratin intermediate filament networks. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 889-894.	7.1	93
10	Optofluidic lasers with a single molecular layer of gain. Lab on A Chip, 2014, 14, 4590-4595.	6.0	70
11	Systematic control of protein interaction using a modular ER/K α-helix linker. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20467-20472.	7.1	67
12	Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins. Journal of Biological Chemistry, 2016, 291, 4742-4753.	3.4	66
13	Conformational plasticity of the intracellular cavity of GPCRâ^G-protein complexes leads to G-protein promiscuity and selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11956-11965.	7.1	66
14	Natural Killer Cells Eradicate Galectin-1–Deficient Glioma in the Absence of Adaptive Immunity. Cancer Research, 2014, 74, 5079-5090.	0.9	62
15	Detection of G Protein-selective G Protein-coupled Receptor (GPCR) Conformations in Live Cells. Journal of Biological Chemistry, 2013, 288, 17167-17178.	3.4	60
16	A method for multiprotein assembly in cells reveals independent action of kinesins in complex. Journal of Cell Biology, 2014, 207, 393-406.	5.2	60
17	Harnessing the Unique Structural Properties of Isolated α-Helices. Journal of Biological Chemistry, 2014, 289, 25460-25467.	3.4	59
18	The GCaMP-R Family of Genetically Encoded Ratiometric Calcium Indicators. ACS Chemical Biology, 2017, 12, 1066-1074.	3.4	56

#	Article	IF	CITATIONS
19	Coupled myosin VI motors facilitate unidirectional movement on an F-actin network. Journal of Cell Biology, 2009, 187, 53-60.	5.2	52
20	Myosin lever arm directs collective motion on cellular actin network. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4091-4096.	7.1	43
21	Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction. Journal of Cell Biology, 2017, 216, 2657-2667.	5.2	39
22	Structural Elements in the Gαs and Gαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR) Signaling. Journal of Biological Chemistry, 2016, 291, 17929-17940.	3.4	38
23	Priming GPCR signaling through the synergistic effect of two G proteins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3756-3761.	7.1	35
24	Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13453-13458.	7.1	35
25	Visualizing and Manipulating Focal Adhesion Kinase Regulation in Live Cells. Journal of Biological Chemistry, 2013, 288, 8875-8886.	3.4	34
26	Helicity of short Eâ€R/K peptides. Protein Science, 2010, 19, 2001-2005.	7.6	32
27	Single-Molecule Dual-Beam Optical Trap Analysis of Protein Structure and Function. Methods in Enzymology, 2010, 475, 321-375.	1.0	32
28	Insights into Human β-Cardiac Myosin Function from Single Molecule and Single Cell Studies. Journal of Cardiovascular Translational Research, 2009, 2, 426-440.	2.4	24
29	Conserved Modular Domains Team up to Latch-open Active Protein Kinase Cα. Journal of Biological Chemistry, 2014, 289, 17812-17829.	3.4	22
30	ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells. Scientific Reports, 2017, 7, 7749.	3.3	22
31	Engineering Circular Gliding of Actin Filaments Along Myosin-Patterned DNA Nanotube Rings To Study Long-Term Actin–Myosin Behaviors. ACS Nano, 2016, 10, 8281-8288.	14.6	19
32	Tuning myosin-driven sorting on cellular actin networks. ELife, 2015, 4, .	6.0	19
33	Cell-Intrinsic Functional Effects of the α-Cardiac Myosin Arg-403-Gln Mutation in Familial Hypertrophic Cardiomyopathy. Biophysical Journal, 2012, 102, 2782-2790.	0.5	18
34	Analyses of Conformational States of the Transporter Associated with Antigen Processing (TAP) Protein in a Native Cellular Membrane Environment. Journal of Biological Chemistry, 2013, 288, 37039-37047.	3.4	18
35	The C2 Domain and Altered ATP-Binding Loop Phosphorylation at Ser ³⁵⁹ Mediate the Redox-Dependent Increase in Protein Kinase C-δActivity. Molecular and Cellular Biology, 2015, 35, 1727-1740.	2.3	18
36	Minute-scale persistence of a GPCR conformation state triggered by non-cognate G protein interactions primes signaling. Nature Communications, 2019, 10, 4836.	12.8	18

#	Article	IF	CITATIONS
37	Patterning protein complexes on DNA nanostructures using a GFP nanobody. Protein Science, 2016, 25, 2089-2094.	7.6	15
38	Distinct structural mechanisms determine substrate affinity and kinase activity of protein kinase Cα. Journal of Biological Chemistry, 2017, 292, 16300-16309.	3.4	15
39	The Role of Regulatory Domains in Maintaining Autoinhibition in the Multidomain Kinase PKCα. Journal of Biological Chemistry, 2017, 292, 2873-2880.	3.4	14
40	The DRY motif and the four corners of the cubic ternary complex model. Cellular Signalling, 2017, 35, 16-23.	3.6	14
41	β2-adrenoceptor ligand efficacy is tuned by a two-stage interaction with the Cαs C terminus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
42	Effect of Ligands and Transducers on the Neurotensin Receptor 1 Conformational Ensemble. Journal of the American Chemical Society, 2022, 144, 10241-10250.	13.7	13
43	Substrate Affinity Differentially Influences Protein Kinase C Regulation and Inhibitor Potency. Journal of Biological Chemistry, 2016, 291, 21963-21970.	3.4	11
44	Bitopic Inhibition of ATP and Substrate Binding in Ser/Thr Kinases through a Conserved Allosteric Mechanism. Biochemistry, 2018, 57, 6387-6390.	2.5	11
45	Dynamic multimerization of Dab2–Myosin VI complexes regulates cargo processivity while minimizing cortical actin reorganization. Journal of Biological Chemistry, 2021, 296, 100232.	3.4	11
46	KIF13A motors are regulated by Rab22A to function as weak dimers inside the cell. Science Advances, 2021, 7, .	10.3	11
47	Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds. PLoS ONE, 2015, 10, e0137125.	2.5	9
48	Calcium Stimulates Self-Assembly of Protein Kinase C Î \pm In Vitro. PLoS ONE, 2016, 11, e0162331.	2.5	9
49	Kinetic model of GPCR-G protein interactions reveals allokairic modulation of signaling. Nature Communications, 2022, 13, 1202.	12.8	8
50	Multimodal regulation of myosin VI ensemble transport by cargo adaptor protein GIPC. Journal of Biological Chemistry, 2022, 298, 101688.	3.4	7
51	Correlation between Activity and Domain Complementation in Adenylyl Cyclase Demonstrated with a Novel Fluorescence Resonance Energy Transfer Sensor. Molecular Pharmacology, 2016, 89, 407-412.	2.3	6
52	ER/K-link—Leveraging a native protein linker to probe dynamic cellular interactions. Methods in Enzymology, 2021, 647, 173-208.	1.0	6
53	Nanosurfer assay dissects β-cardiac myosin and cardiac myosin-binding protein C interactions. Biophysical Journal, 2022, 121, 2449-2460.	0.5	6
54	Stiffness of Cargo–Motor Linkage Tunes Myosin VI Motility and Response to Load. Biochemistry, 2019, 58, 4721-4725.	2.5	5

#	Article	IF	CITATIONS
55	G Protein-selective GPCR Conformations Measured Using FRET Sensors in a Live Cell Suspension Fluorometer Assay. Journal of Visualized Experiments, 2016, , .	0.3	4
56	Allosteric modulation of adenosine A1 and cannabinoid 1 receptor signaling by Gâ€peptides. Pharmacology Research and Perspectives, 2020, 8, e00673.	2.4	2
57	Kinase inhibitors allosterically disrupt a regulatory interaction to enhance PKCα membrane translocation. Journal of Biological Chemistry, 2021, 296, 100339.	3.4	2
58	Engineering Synthetic Myosin Filaments Using DNA Nanotubes. Methods in Molecular Biology, 2018, 1805, 93-101.	0.9	1
59	Engaging myosin VI tunes motility, morphology and identity in endocytosis. Traffic, 2018, 19, 710-722.	2.7	1
60	Cargo-Mediated Regulation of Collective Myosin VI Motility. Biophysical Journal, 2017, 112, 238a.	0.5	0
61	A Phospho-Induced Theft of a Salt Bridge in RKIP Links Map Kinase and G Protein-Mediated Signaling. Biophysical Journal, 2017, 112, 63a-64a.	0.5	О
62	Tracking GPCR promiscuity at the source: How receptor conformation is translated to differential function. FASEB Journal, 2013, 27, 559.5.	0.5	0
63	Conserved saltâ€bridge competition triggered by phosphorylation regulates the protein interactome. FASEB Journal, 2018, 32, 533.100.	0.5	Ο
64	Molecular GPS: Receptor and Gâ€protein dynamics that drive selectivity in GPCRs. FASEB Journal, 2018, 32, 557.14.	0.5	0
65	Dissecting cardiac myosin-binding protein C interactions on a synthetic β-cardiac myosin DNA nanotube thick filament. Biophysical Journal, 2022, 121, 257a.	0.5	Ο
66	Cargo-motor interaction kinetics regulate myosin VI based transport. Biophysical Journal, 2022, 121, 402a.	0.5	0