Timothy J Tschaplinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6960415/publications.pdf

Version: 2024-02-01

179 papers 18,822 citations

26630 56 h-index 132 g-index

187 all docs

187
docs citations

times ranked

187

21821 citing authors

#	Article	IF	CITATIONS
1	Ozonized biochar filtrate effects on the growth of Pseudomonas putida and cyanobacteria Synechococcus elongatus PCC 7942. Bioresources and Bioprocessing, 2022, 9, .	4.2	O
2	Diversity and conservation of plant small secreted proteins associated with arbuscular mycorrhizal symbiosis. Horticulture Research, 2022, 9, .	6.3	1
3	Expanding the Biological Role of Lipo-Chitooligosaccharides and Chitooligosaccharides in Laccaria bicolor Growth and Development. Frontiers in Fungal Biology, 2022, 3, .	2.0	4
4	Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 2022, 40, 335-344.	17.5	195
5	Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. Plant Physiology, 2022, 189, 516-526.	4.8	18
6	Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. Science Advances, 2022, 8, eabm8145.	10.3	26
7	Proteomic and metabolic disturbances in lignin-modified <i>Brachypodium distachyon</i> . Plant Cell, 2022, 34, 3339-3363.	6.6	14
8	Relationships between Sphaerulina musiva Infection and the <i>Populus</i> Microbiome and Metabolome. MSystems, 2022, 7, .	3.8	2
9	ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. Journal of Experimental Botany, 2021, 72, 2710-2726.	4.8	18
10	Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 439-470.	6.8	69
11	Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. Horticulture Research, 2021, 8, 130.	6.3	20
12	Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Frontiers in Plant Science, 2021, 12, 704697.	3.6	49
13	Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptorâ€like kinase. Plant Biotechnology Journal, 2021, 19, 2454-2468.	8.3	14
14	Plant–Microbe Interactions: From Genes to Ecosystems Using <i>Populus</i> as a Model System. Phytobiomes Journal, 2021, 5, 29-38.	2.7	31
15	Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. Biodesign Research, 2021, 2021, .	1.9	5
16	Structural changes of lignins in natural Populus variants during different pretreatments. Bioresource Technology, 2020, 295, 122240.	9.6	61
17	Overexpression of a <i>Prefoldin \hat{l}^2</i> subunit gene reduces biomass recalcitrance in the bioenergy crop <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 859-871.	8.3	17
18	Identification of functional single nucleotide polymorphism of Populus trichocarpa PtrEPSPâ€√F and determination of its transcriptional effect. Plant Direct, 2020, 4, e00178.	1.9	4

#	Article	IF	Citations
19	Genome-Wide Association Study of Wood Anatomical and Morphological Traits in Populus trichocarpa. Frontiers in Plant Science, 2020, 11, 545748.	3.6	21
20	Isolation, Characterization, and Pathogenicity of Two Pseudomonas syringae Pathovars from Populus trichocarpa Seeds. Microorganisms, 2020, 8, 1137.	3.6	9
21	Arabidopsis Câ€terminal binding protein ANGUSTIFOLIA modulates transcriptional coâ€tegulation of <i>MYB46</i> and <i>WRKY33</i> New Phytologist, 2020, 228, 1627-1639.	7.3	17
22	Transcriptional and Post-transcriptional Regulation of Lignin Biosynthesis Pathway Genes in Populus. Frontiers in Plant Science, 2020, 11, 652.	3.6	34
23	Transgenic Poplar Designed for Biofuels. Trends in Plant Science, 2020, 25, 881-896.	8.8	45
24	Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metabolic Engineering, 2020, 62, 95-105.	7.0	27
25	Host plant genetic control of associated fungal and insect species in a <i>Populus</i> hybrid cross. Ecology and Evolution, 2020, 10, 5119-5134.	1.9	4
26	Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought. MSystems, 2020, 5, .	3.8	36
27	Impacts of Soil Microbiome Variations on Root Colonization by Fungi and Bacteria and on the Metabolome of <i>Populus tremula</i> Å— <i>alba</i> Phytobiomes Journal, 2020, 4, 142-155.	2.7	24
28	Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. Frontiers in Plant Science, 2020, 11, 572137.	3.6	43
29	Biosystems Design to Accelerate C ₃ -to-CAM Progression. Biodesign Research, 2020, 2020, .	1.9	16
30	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	1.9	16
31	Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites. MicrobiologyOpen, 2019, 8, e00639.	3.0	15
32	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	9.3	42
33	Natural variability and antioxidant properties of commercially cultivated switchgrass extractives. Industrial Crops and Products, 2019, 138, 111474.	5.2	11
34	Microfluidics and Metabolomics Reveal Symbiotic Bacterial–Fungal Interactions Between Mortierella elongata and Burkholderia Include Metabolite Exchange. Frontiers in Microbiology, 2019, 10, 2163.	3.5	37
35	Data Integration in Poplar: †Omics Layers and Integration Strategies. Frontiers in Genetics, 2019, 10, 874.	2.3	15
36	Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany, 2019, 70, 6539-6547.	4.8	21

#	Article	IF	Citations
37	Horizontal transfer of a pathway for coumarate catabolism unexpectedly inhibits purine nucleotide biosynthesis. Molecular Microbiology, 2019, 112, 1784-1797.	2.5	5
38	Finding New Cell Wall Regulatory Genes in Populus trichocarpa Using Multiple Lines of Evidence. Frontiers in Plant Science, 2019, 10, 1249.	3.6	13
39	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop $\langle i \rangle$ Populus $\langle i \rangle$. Sustainable Energy and Fuels, 2019, 3, 195-207.	4.9	27
40	Multi-Phenotype Association Decomposition: Unraveling Complex Gene-Phenotype Relationships. Frontiers in Genetics, 2019, 10, 417.	2.3	20
41	Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome, 2019, 7, 76.	11.1	109
42	Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL-COA 3-O-METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. Biotechnology for Biofuels, 2019, 12, 108.	6.2	18
43	4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nature Communications, 2019, 10, 1994.	12.8	171
44	Multitrait genomeâ€wide association analysis of <i>Populus trichocarpa</i> identifies key polymorphisms controlling morphological and physiological traits. New Phytologist, 2019, 223, 293-309.	7.3	85
45	The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Annals of Botany, 2019, 124, 617-626.	2.9	45
46	Scavenging organic nitrogen and remodelling lipid metabolism are key survival strategies adopted by the endophytic fungi, <i>Serendipita vermifera</i> and <i>Serendipita bescii</i> to alleviate nitrogen and phosphorous starvation in vitro. Environmental Microbiology Reports, 2019, 11, 548-557.	2.4	18
47	Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. Current Opinion in Biotechnology, 2019, 56, 250-257.	6.6	20
48	Ectopic Defense Gene Expression Is Associated with Growth Defects in <i>Medicago truncatula</i> Lignin Pathway Mutants. Plant Physiology, 2019, 181, 63-84.	4.8	27
49	Underground Azelaic Acid–Conferred Resistance to <i>Pseudomonas syringae</i> in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2019, 32, 86-94.	2.6	35
50	Breeding progress and preparedness for massâ€scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy, 2019, 11, 118-151.	5.6	116
51	Mathematical models of lignin biosynthesis. Biotechnology for Biofuels, 2018, 11, 34.	6.2	32
52	Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics. Biotechnology for Biofuels, 2018, 11, 98.	6.2	16
53	A physical catalyst for the electrolysis of nitrogen to ammonia. Science Advances, 2018, 4, e1700336.	10.3	264
54	Abiotic Stresses Shift Belowground <i>Populus</i> -Associated Bacteria Toward a Core Stress Microbiome. MSystems, 2018, 3, .	3.8	89

#	Article	IF	CITATIONS
55	Phytobiome and Transcriptional Adaptation of <i>Populus deltoides</i> to Acute Progressive Drought and Cyclic Drought. Phytobiomes Journal, 2018, 2, 249-260.	2.7	23
56	A dynamic model of lignin biosynthesis in Brachypodium distachyon. Biotechnology for Biofuels, 2018, 11, 253.	6.2	11
57	Regulation of Lignin Biosynthesis and Its Role in Growth-Defense Tradeoffs. Frontiers in Plant Science, 2018, 9, 1427.	3.6	231
58	Understanding the influences of different pretreatments on recalcitrance of Populus natural variants. Bioresource Technology, 2018, 265, 75-81.	9.6	20
59	Perspectives on the basic and applied aspects of crassulacean acid metabolism (CAM) research. Plant Science, 2018, 274, 394-401.	3.6	18
60	Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery. Frontiers in Energy Research, 2018, 6 , .	2.3	32
61	<scp>Genomeâ€wide association studies</scp> and expressionâ€based quantitative trait loci analyses reveal roles of <scp>HCT</scp> 2 in caffeoylquinic acid biosynthesis and its regulation by defenseâ€responsive transcription factors in <i>Populus</i>): New Phytologist, 2018, 220, 502-516.	7.3	112
62	Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave. BMC Genomics, 2018, 19, 588.	2.8	64
63	A 5-Enolpyruvylshikimate 3-Phosphate Synthase Functions as a Transcriptional Repressor in <i>Populus</i> . Plant Cell, 2018, 30, 1645-1660.	6.6	56
64	Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50 3
65	Modification of plant cell wall chemistry impacts metabolome and microbiome composition in Populus PdKOR1 RNAi plants. Plant and Soil, 2018, 429, 349-361.	3.7	16
66	Comparative genomics of <i>Mortierella elongata</i> and its bacterial endosymbiont <i>Mycoavidus cysteinexigens</i> . Environmental Microbiology, 2017, 19, 2964-2983.	3.8	154
67	Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. Biotechnology for Biofuels, 2017, 10, 14.	6.2	30
68	Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum. Scientific Reports, 2017, 7, 43355.	3.3	24
69	Characterization of a novel, ubiquitous fungal endophyte from the rhizosphere and root endosphere of Populus trees. Fungal Ecology, 2017, 27, 78-86.	1.6	27
70	³¹ P NMR Characterization of Tricin and Its Structurally Similar Flavonoids. ChemistrySelect, 2017, 2, 3557-3561.	1.5	14
71	Insights of biomass recalcitrance in natural <i>Populus trichocarpa</i> variants for biomass conversion. Green Chemistry, 2017, 19, 5467-5478.	9.0	82
72	The Kalancho $ ilde{A}$ « genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 2017, 8, 1899.	12.8	159

#	Article	IF	Citations
73	Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 138, 46-53.	2.9	11
74	Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnology for Biofuels, 2017, 10, 12.	6.2	30
75	Poplar <i>Ptab<scp>ZIP</scp>1â€like</i> enhances lateral root formation and biomass growth under drought stress. Plant Journal, 2017, 89, 692-705.	5.7	64
76	An Inâ€Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock. ChemSusChem, 2017, 10, 139-150.	6.8	106
77	Overexpression of a Domain of Unknown Function 231-containing protein increases O-xylan acetylation and cellulose biosynthesis in Populus. Biotechnology for Biofuels, 2017, 10, 311.	6.2	26
78	Agronomic performance of Populus deltoides trees engineered for biofuel production. Biotechnology for Biofuels, 2017, 10, 253.	6.2	22
79	Targeted redox and energy cofactor metabolomics in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Biotechnology for Biofuels, 2017, 10, 270.	6.2	5
80	A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization. Frontiers in Microbiology, 2016, 7, 491.	3.5	48
81	Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Frontiers in Plant Science, 2016, 7, 497.	3.6	113
82	Down-Regulation of KORRIGAN-Like Endo- \hat{l}^2 -1,4-Glucanase Genes Impacts Carbon Partitioning, Mycorrhizal Colonization and Biomass Production in Populus. Frontiers in Plant Science, 2016, 7, 1455.	3.6	32
83	Knockdown of a laccase in <i>Populus deltoides</i> confers altered cell wall chemistry and increased sugar release. Plant Biotechnology Journal, 2016, 14, 2010-2020.	8.3	64
84	Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure. Biotechnology for Biofuels, 2016, 9, 31.	6.2	54
85	Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nature Plants, 2016, 2, 16178.	9.3	158
86	A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chemistry, 2016, 18, 5015-5024.	9.0	85
87	Transgenic soybean overexpressing <i>Gm<scp>SAMT</scp>1</i> exhibits resistance to multipleâ€ <scp>HG</scp> types of soybean cyst nematode <i>Heterodera glycines</i> Plant Biotechnology Journal, 2016, 14, 2100-2109.	8.3	23
88	Scaling nitrogen and carbon interactions: what are the consequences of biological buffering?. Ecology and Evolution, 2015, 5, 2839-2850.	1.9	4
89	ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in <i>Arabidopsis</i> Molecular Plant-Microbe Interactions, 2015, 28, 455-466.	2.6	56
90	Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Systems Biology, 2015, 9, 30.	3.0	24

#	Article	IF	Citations
91	Xylan hydrolysis in Populus trichocarpa×P. deltoides and model substrates during hydrothermal pretreatment. Bioresource Technology, 2015, 179, 202-210.	9.6	16
92	Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis. Phytochemistry, 2015, 112, 170-178.	2.9	31
93	Computational Ranking of Yerba Mate Small Molecules Based on Their Predicted Contribution to Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus. PLoS ONE, 2015, 10, e0123925.	2.5	10
94	A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E. Biotechnology for Biofuels, 2014, 7, 165.	6.2	17
95	Selective herbivory by an invasive cyprinid, the rudd <i><scp>S</scp>cardinius erythrophthalmus</i> Freshwater Biology, 2014, 59, 2315-2327.	2.4	19
96	Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus. BMC Plant Biology, 2014, 14, 265.	3.6	61
97	The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnology for Biofuels, 2014, 7, 155.	6.2	96
98	Transgenic American chestnuts show enhanced blight resistance and transmit the trait to T1 progeny. Plant Science, 2014, 228, 88-97.	3.6	77
99	Engineering crassulacean acid metabolism to improve water-use efficiency. Trends in Plant Science, 2014, 19, 327-338.	8.8	206
100	Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 2014, 344, 1246843.	12.6	2,994
101	Functional Genomics of Drought Tolerance in Bioenergy Crops. Critical Reviews in Plant Sciences, 2014, 33, 205-224.	5.7	25
102	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	27.8	725
103	Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnology for Biofuels, 2014, 7, 25.	6.2	25
104	<i>Populus trichocarpa</i> and <i>Populus deltoides</i> Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus <i>Laccaria bicolor</i> Molecular Plant-Microbe Interactions, 2014, 27, 546-556.	2.6	69
105	Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels, 2013, 6, 71.	6.2	118
106	Temperatureâ€dependent shade avoidance involves the receptorâ€like kinase <scp>ERECTA</scp> . Plant Journal, 2013, 73, 980-992.	5.7	63
107	Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa). Phytochemistry, 2013, 94, 74-81.	2.9	20
108	Characterization of <i>Clostridium thermocellum</i> strains with disrupted fermentation end-product pathways. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 725-734.	3.0	50

#	Article	IF	Citations
109	The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, 2013, 6, 110.	6.2	191
110	Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. Biotechnology for Biofuels, 2013, 6, 179.	6.2	62
111	Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Bioresource Technology, 2013, 130, 125-135.	9.6	33
112	Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus. Planta, 2013, 238, 271-282.	3.2	92
113	Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy and Environmental Science, 2013, 6, 2186.	30.8	75
114	Evolutionary analyses of nonâ€family genes in plants. Plant Journal, 2013, 73, 788-797.	5.7	7
115	Genome Anchored QTLs for Biomass Productivity in Hybrid Populus Grown under Contrasting Environments. PLoS ONE, 2013, 8, e54468.	2.5	20
116	Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses. PLoS ONE, 2013, 8, e68886.	2.5	64
117	Industrial Robustness: Understanding the Mechanism of Tolerance for the Populus Hydrolysate-Tolerant Mutant Strain of Clostridium thermocellum. PLoS ONE, 2013, 8, e78829.	2.5	21
118	<i>Pseudomonas fluorescens</i> Induces Strain-Dependent and Strain-Independent Host Plant Responses in Defense Networks, Primary Metabolism, Photosynthesis, and Fitness. Molecular Plant-Microbe Interactions, 2012, 25, 765-778.	2.6	100
119	Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genomics, 2012, 13, 336.	2.8	73
120	Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnology for Biofuels, 2012, 5, 71.	6.2	96
121	Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnology for Biofuels, 2012, 5, 81.	6.2	46
122	Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnology for Biofuels, 2012, 5, 2.	6.2	125
123	The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree Genetics and Genomes, 2012, 8, 559-571.	1.6	50
124	Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresource Technology, 2012, 103, 293-299.	9.6	90
125	Comparative analysis of GT14/GT14-like gene family in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Plant Science, 2011, 181, 688-695.	3.6	29
126	Genomic aspects of research involving polyploid plants. Plant Cell, Tissue and Organ Culture, 2011, 104, 387-397.	2.3	45

#	Article	IF	Citations
127	Discovery and annotation of small proteins using genomics, proteomics, and computational approaches. Genome Research, 2011, 21, 634-641.	5.5	105
128	Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics, 2010, 11, 674.	2.8	70
129	Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiology and Biochemistry, 2010, 48, 279-287.	5.8	65
130	Efficient Degradation of Lignocellulosic Plant Biomass, without Pretreatment, by the Thermophilic Anaerobe " ⟨i>Anaerocellum thermophilum⟨ i> ―DSM 6725. Applied and Environmental Microbiology, 2009, 75, 4762-4769.	3.1	187
131	Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics, 2009, 10, 34.	2.8	138
132	Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns. Phytochemistry, 2009, 70, 32-39.	2.9	39
133	Priming in Systemic Plant Immunity. Science, 2009, 324, 89-91.	12.6	749
134	Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus. Genomics, 2009, 93, 473-480.	2.9	50
135	Genomics of Secondary Metabolism in <i>Populus</i> Interactions with Biotic and Abiotic Environments. Critical Reviews in Plant Sciences, 2009, 28, 375-392.	5.7	98
136	Poplar Genomics: State of the Science. Critical Reviews in Plant Sciences, 2009, 28, 285-308.	5.7	42
137	The F-Box Gene Family Is Expanded in Herbaceous Annual Plants Relative to Woody Perennial Plants Â. Plant Physiology, 2008, 148, 1189-1200.	4.8	125
138	Salicylate and catechol levels are maintained in nahG transgenic poplar. Phytochemistry, 2007, 68, 2043-2052.	2.9	33
139	The Path Forward for Biofuels and Biomaterials. Science, 2006, 311, 484-489.	12.6	4,935
140	Measuring the Efficiency of Biomass Energy. Science, 2006, 312, 1744-1745.	12.6	14
141	Genomeâ€wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytologist, 2006, 172, 47-62.	7.3	271
142	Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta, 2006, 224, 288-299.	3.2	130
143	Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiology, 2006, 26, 557-564.	3.1	17
144	Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments. Tree Physiology, 2006, 26, 595-604.	3.1	50

#	Article	IF	CITATIONS
145	Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology, 2005, 11, 1402-1423.	9.5	83
146	Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Canadian Journal of Forest Research, 2005, 35, 1779-1789.	1.7	134
147	Estimating the Net Primary and Net Ecosystem Production of a Southeastern Upland Quercus Forest from an 8-Year Biometric Record. Ecological Studies, 2003, , 378-395.	1.2	12
148	Dormant-Season Nonstructural Carbohydrate Storage. Ecological Studies, 2003, , 67-84.	1.2	4
149	Leaf Water Potential, Osmotic Potential, and Solute Accumulation of Several Hardwood Species as Affected by Manipulation of Throughfall Precipitation in an Upland Quercus Forest. Ecological Studies, 2003, , 121-139.	1.2	1
150	Solute accumulation of chestnut oak and dogwood leaves in response to throughfall manipulation of an upland oak forest. Tree Physiology, 2002, 22, 251-260.	3.1	26
151	Stem respiration increases in CO2-enriched sweetgum trees. New Phytologist, 2002, 155, 239-248.	7.3	46
152	Plant water relations at elevated CO2 - implications for water-limited environments. Plant, Cell and Environment, 2002, 25, 319-331.	5 . 7	352
153	Growth, soluble carbohydrates, and aloin concentration of Aloe vera plants exposed to three irradiance levels. Environmental and Experimental Botany, 2000, 44, 133-139.	4.2	56
154	Drought resistance of two hybrid Populus clones grown in a large-scale plantation. Tree Physiology, 1998, 18, 653-658.	3.1	96
155	Clonal and seasonal differences in leaf osmotic potential and organic solutes of five hybrid poplar clones grown under field conditions. Tree Physiology, 1998, 18, 645-652.	3.1	46
156	Water relations of several hardwood species in response to throughfall manipulation in an upland oak forest during a wet year. Tree Physiology, 1998, 18, 299-305.	3.1	40
157	Osmotic potential of several hardwood species as affected by manipulation of throughfall precipitation in an upland oak forest during a dry year. Tree Physiology, 1998, 18, 291-298.	3.1	63
158	Interactions between drought and elevated CO 2 on growth and gas exchange of seedlings of three deciduous tree species. New Phytologist, 1995, 129, 63-71.	7.3	74
159	Interactions between drought and elevated CO2on osmotic adjustment and solute concentrations of tree seedlings. New Phytologist, 1995, 131, 169-177.	7.3	32
160	Growth and solute adjustment of calli of Populus clones cultured on nutrient medium containing polyethylene glycol. Canadian Journal of Forest Research, 1995, 25, 1425-1433.	1.7	12
161	Water-stress tolerance of black and eastern cottonwood clones and four hybrid progeny. II. Metabolites and inorganic ions that constitute osmotic adjustment. Canadian Journal of Forest Research, 1994, 24, 681-687.	1.7	48
162	Water-stress tolerance of black and eastern cottonwood clones and four hybrid progeny. I. Growth, water relations, and gas exchange. Canadian Journal of Forest Research, 1994, 24, 364-371.	1.7	64

#	Article	IF	CITATIONS
163	Nitrogen fertilization strategies in a short-rotation sycamore plantation. Forest Ecology and Management, 1994, 64, 13-24.	3.2	51
164	Physiological indicators of nitrogen response in a short rotation sycamore plantation. II. Nitrogen metabolism. Canadian Journal of Botany, 1993, 71, 841-847.	1.1	6
165	Biological responses of two soybean cultivars exposed to enhanced UVB radiation. Environmental and Experimental Botany, 1993, 33, 347-356.	4.2	36
166	Influence of dormancy induction treatments on western hemlock seedlings. I. Seedling development and stock quality assessment. Canadian Journal of Forest Research, 1991, 21, 164-174.	1.7	35
167	Biomass and Soil Nitrogen Relationships of a Oneâ€Yearâ€Old Sycamore Plantation. Soil Science Society of America Journal, 1991, 55, 841-847.	2.2	14
168	Physiological indicators of nitrogen response in a short rotation sycamore plantation. I. CO2 assimilation, photosynthetic pigments and soluble carbohydrates. Physiologia Plantarum, 1991, 82, 117-126.	5.2	15
169	Carbohydrate accumulation and turgor maintenance in seedling shoots and roots of two boreal conifers subjected to water stress. Canadian Journal of Botany, 1991, 69, 2522-2528.	1.1	34
170	Physiological indicators of nitrogen response in a short rotation sycamore plantation. I. CO2 assimilation, photosynthetic pigments and soluble carbohydrates. Physiologia Plantarum, 1991, 82, 117-126.	5.2	2
171	Water-stress tolerance and late-season organic solute accumulation in hybrid poplar. Canadian Journal of Botany, 1989, 67, 1681-1688.	1.1	36
172	Photosynthetic reinvigoration of leaves following shoot decapitation and accelerated growth of coppice shoots. Physiologia Plantarum, 1989, 75, 157-165.	5.2	74
173	The role of sink demand in carbon partitioning and photosynthetic reinvigoration following shoot decapitation. Physiologia Plantarum, 1989, 75, 166-173.	5.2	41
174	Correlation between early root production, carbohydrate metabolism, and subsequent biomass production in hybrid poplar. Canadian Journal of Botany, 1989, 67, 2168-2174.	1.1	35
175	Water relations, photosynthetic capacity, and root/shoot partitioning of photosynthate as determinants of productivity in hybrid poplar. Canadian Journal of Botany, 1989, 67, 1689-1697.	1.1	37
176	Role of water relations and photosynthesis in the release of buds from apical dominance and the early reinvigoration of decapitated poplars. Physiologia Plantarum, 1986, 68, 287-293.	5.2	29
177	Effects of root restriction on growth correlations, water relations and senescence of alder seedlings. Physiologia Plantarum, 1985, 64, 167-176.	5.2	66
178	Stomatal control of water use efficiency in poplar clones and hybrids. Canadian Journal of Botany, 1984, 62, 1344-1351.	1.1	42
179	Third-codon transversion rate-based Nymphaea basal angiosperm phylogeny concordance with developmental evidence. Nature Precedings, 0, , .	0.1	3