
Claus Ropers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6959806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pinning and gyration dynamics of magnetic vortices revealed by correlative Lorentz and bright-field imaging. Physical Review Research, 2022, 4, .	1.3	1
2	Tailored nanophononic wavefield in a patterned bilayer system probed by ultrafast convergent beam electron diffraction. Structural Dynamics, 2022, 9, 034301.	0.9	1
3	Observation of fluctuation-mediated picosecond nucleation of a topological phase. Nature Materials, 2021, 20, 30-37.	13.3	68
4	Chiral solid-state high-harmonic generation and spectroscopy with polarization-tailored strong fields. , 2021, , .		0
5	Continuous-wave electron-photon interactions using chip-based high-Q Si3N4 microresonator. , 2021, ,		0
6	Optical Coherence Transfer Mediated by Free Electrons. , 2021, , .		1
7	Modulation of Cathodoluminescence Emission by Interference with External Light. ACS Nano, 2021, 15, 7290-7304.	7.3	28
8	Optical coherence transfer mediated by free electrons. Science Advances, 2021, 7, .	4.7	51
9	Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields. Light: Science and Applications, 2021, 10, 82.	7.7	40
10	Ultrafast spot-profile LEED of a charge-density wave phase transition. Applied Physics Letters, 2021, 118, 221603.	1.5	5
11	Chiral high-harmonic generation and spectroscopy on solid surfaces using polarization-tailored strong fields. Nature Communications, 2021, 12, 3723.	5.8	23
12	Continuous-wave electron-light interaction in high-Q whispering gallery microresonators. , 2021, , .		0
13	Chiral high-harmonic spectroscopy in solids by polarization control of the driving strong field. , 2021, , .		Ο
14	High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. , 2021, , .		0
15	High-Q photonic chip-based temporal phase plates for electron microscopy. Microscopy and Microanalysis, 2021, 27, 3132-3133.	0.2	Ο
16	Ultrafast nanoimaging of the order parameter in a structural phase transition. Microscopy and Microanalysis, 2021, 27, 2958-2961.	0.2	0
17	Tailored high-contrast attosecond electron pulses for coherent excitation and scattering. Physical Review Research, 2021, 3, .	1.3	30
18	Ultrafast electron microscopy for probing magnetic dynamics. MRS Bulletin, 2021, 46, 711-719.	1.7	9

#	Article	IF	CITATIONS
19	Ultrafast nanoimaging of the order parameter in a structural phase transition. Science, 2021, 371, 371-374.	6.0	85
20	High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. , 2021, , .		0
21	Modulation of cathodoluminescence emission by interference with external light. , 2021, , .		2
22	Ultrafast high-harmonic nanoscopy of magnetization dynamics. Nature Communications, 2021, 12, 6337.	5.8	22
23	Integrated photonics enables continuous-beam electron phase modulation. Nature, 2021, 600, 653-658.	13.7	74
24	Probing the Energy Conversion Pathways between Light, Carriers, and Lattice in Real Time with Attosecond Core-Level Spectroscopy. Physical Review X, 2021, 11, .	2.8	10
25	Resonant excitation and all-optical switching of femtosecond soliton molecules. Nature Photonics, 2020, 14, 9-13.	15.6	83
26	Density matrix reconstructions in ultrafast transmission electron microscopy: uniqueness, stability, and convergence rates. Inverse Problems, 2020, 36, 025005.	1.0	3
27	Nanoscale Nonlinear Optical Spectroscopy with Electron Beams. Microscopy and Microanalysis, 2020, 26, 3176-3176.	0.2	0
28	Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction. Structural Dynamics, 2020, 7, 034304.	0.9	20
29	Coherent Phase Control of Ultrashort Electron Pulses by Traveling Optical Waves and Whispering-gallery Modes. Microscopy and Microanalysis, 2020, 26, 678-680.	0.2	0
30	Imaging Nanoscale Optical Fields with Inelastic Electron-light Scattering. Microscopy and Microanalysis, 2020, 26, 1920-1922.	0.2	0
31	Structure and Nonequilibrium Heatâ€Transfer of a Physisorbed Molecular Layer on Graphene. Advanced Materials Interfaces, 2020, 7, 2000473.	1.9	1
32	Probing Chirality with Inelastic Electron-Light Scattering. Nano Letters, 2020, 20, 4377-4383.	4.5	23
33	Controlling free electrons with optical whispering-gallery modes. Nature, 2020, 582, 46-49.	13.7	132
34	Strong-field nano-optics. Reviews of Modern Physics, 2020, 92, .	16.4	141
35	Coherent control of a surface structural phase transition. Nature, 2020, 583, 232-236.	13.7	81
36	Controlling photocurrent channels in scanning tunneling microscopy. New Journal of Physics, 2020, 22, 033047.	1.2	18

#	Article	IF	CITATIONS
37	Few-nm tracking of current-driven magnetic vortex orbits using ultrafast Lorentz microscopy. Communications Physics, 2020, 3, .	2.0	35
38	A dynamical symmetry triad in high-harmonic generation revealed by attosecond recollision control. New Journal of Physics, 2020, 22, 053017.	1.2	6
39	Nanoscale Nonlinear Spectroscopy with Electron Beams. ACS Photonics, 2020, 7, 1290-1296.	3.2	18
40	Interlocked attosecond pulse trains in slightly bi-elliptical high harmonic generation. JPhys Photonics, 2020, 2, 034005.	2.2	9
41	High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. Physical Review Research, 2020, 2, .	1.3	48
42	Ultrafast nano-imaging of the order parameter in a structural phase transition. , 2020, , .		1
43	Controlling Free Electrons with Optical Whispering-Gallery Modes. , 2020, , .		1
44	Femtosecond nanoscopy with high harmonics. , 2020, , .		0
45	Toward Quantum Optics with Free Electrons. Optics and Photonics News, 2020, 31, 35.	0.4	0
46	Radio-frequency controlled electron pulses for time-resolved LEED. , 2020, , .		0
47	Exerting Coherent Control over a Surface Structural Phase Transition via Amplitude Modes. , 2020, , .		0
48	Polarization-Sensitive Coherent Diffractive Imaging Using HHG. Topics in Applied Physics, 2020, , 501-522.	0.4	2
49	Controlling Free Electrons with Optical Whispering-Gallery Modes. , 2020, , .		0
50	Imaging Chiral Materials with Photon-Induced Near-Field Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1720-1721.	0.2	0
51	Surface structure and stacking of the commensurate (13×13)R13.9â~ charge density wave phase of 1Tâ~TaS2(0001). Physical Review B, 2019, 100, .	1.1	14
52	Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane: A combined STM and DFT study. Physical Review B, 2019, 100, .	1.1	4
53	Probing Nanoscale Optical Fields and Phase-Shaping Electron Beams by Inelastic Electron-Light Scattering. , 2019, , .		0
54	Ultrafast Spin Dynamics Resolved with High-Harmonic Generation Microscopy. , 2019, , .		0

#	Article	IF	CITATIONS
55	Active Control of Femtosecond Soliton Molecules. , 2019, , .		0
56	Polarization-Resolved High Harmonic Spectroscopy of Interlocked Attosecond Bursts. , 2019, , .		0
57	Nanoscale Structural Dynamics Probed by Coherent Ultrafast TEM. Microscopy and Microanalysis, 2019, 25, 1648-1649.	0.2	0
58	Femtosecond Lorentz Microscopy for the Mapping of Ultrafast Magnetization Dynamics. Microscopy and Microanalysis, 2019, 25, 38-39.	0.2	0
59	Structural phase transitions and phase ordering at surfaces probed by ultrafast LEED. EPJ Web of Conferences, 2019, 205, 08005.	0.1	Ο
60	Generation and attosecond shaping of high coherence free-electron beams for ultrafast TEM. EPJ Web of Conferences, 2019, 205, 08012.	0.1	0
61	Highly Coherent Femtosecond Electron Pulses for Ultrafast Transmission Electron Microscopy. EPJ Web of Conferences, 2019, 205, 08014.	0.1	Ο
62	Holograms from electrons scattered by light. Nature, 2019, 571, 331-332.	13.7	2
63	Coulomb interactions in high-coherence femtosecond electron pulses from tip emitters. Structural Dynamics, 2019, 6, 014301.	0.9	30
64	All-optical switching and real-time spectroscopy of soliton molecules in a few-cycle laser oscillator. EPJ Web of Conferences, 2019, 205, 03005.	0.1	0
65	Attosecond Soft X-Ray Absorption Spectroscopy in Graphite. , 2019, , .		0
66	Quantum Electron-Photon Entanglement in the Strong-Coupling Regime. , 2019, , .		0
67	Ultrafast Magnetic Microscopy using High-Harmonic Radiation. , 2019, , .		0
68	Ultrafast nanoelectronics: steering electrons in infrared near-fields (Conference Presentation) (Withdrawal Notice). , 2018, , .		0
69	Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy. Structural Dynamics, 2018, 5, 014302.	0.9	50
70	Continuous-wave multiphoton photoemission from plasmonic nanostars. Communications Physics, 2018, 1, .	2.0	37
71	Real-time observation of hidden multi-soliton dynamics in a few-cycle Ti:Sapph oscillator (Conference) Tj ETQq1	1 0.784314	4 rgBT /Ove
72	Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction. Nature Physics, 2018, 14, 184-190.	6.5	110

#	Article	IF	CITATIONS
73	Terahertz Nano-Streaking: Resolving Nearfields and Plasmon Propagation. , 2018, , .		Ο
74	Ultrafast miniaturized pulsed electron gun for timeresolved surface measurements. , 2018, , .		0
75	Nanoscale Mapping of Ultrafast Magnetization Dynamics with Femtosecond Lorentz Microscopy. Physical Review X, 2018, 8, .	2.8	22
76	Structural dynamics probed by high-coherence electron pulses. MRS Bulletin, 2018, 43, 504-511.	1.7	10
77	Ultrafast Transmission Electron Microscopy with High-Coherence Electron Pulses. Microscopy and Microanalysis, 2018, 24, 2006-2007.	0.2	Ο
78	Quantum Coherent Transverse and Longitudinal Control for Attosecond Shaping of Free Electron Beams. , 2018, , .		1
79	Controlling High Harmonic Generation in Tailored Semiconductors. , 2018, , .		0
80	Magnetic sub-Wavelength Imaging using High-Harmonic Radiation. , 2018, , .		0
81	Nanoscale Magnetic Imaging using High-Harmonic Radiation. , 2018, , .		1
82	Light-Induced Metastable Magnetic Texture Uncovered by <i>inÂsitu</i> Lorentz Microscopy. Physical Review Letters, 2017, 118, 097203.	2.9	50
83	Nanotip-based photoelectron microgun for ultrafast LEED. Structural Dynamics, 2017, 4, 044024.	0.9	34
84	Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 2017, 356, 50-54.	6.0	498
85	Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam. Ultramicroscopy, 2017, 176, 63-73.	0.8	292
86	Clocking plasmon nanofocusing by THz near-field streaking. Applied Physics Letters, 2017, 111, 131102.	1.5	3
87	Tailored semiconductors for high-harmonic optoelectronics. Science, 2017, 357, 303-306.	6.0	173
88	Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nature Photonics, 2017, 11, 793-797.	15.6	238
89	Nanoscale magnetic imaging using a compact high-harmonic source. , 2017, , .		0
90	Phase space manipulation of free-electron pulses from metal nanotips using combined terahertz near fields and external biasing. Physical Review B, 2017, 95, .	1.1	13

#	Article	IF	CITATIONS
91	Ultrafast sublattice pseudospin relaxation in graphene probed by polarization-resolved photoluminescence. Physical Review B, 2017, 95, .	1.1	9
92	Highly coherent femtosecond electron pulses for ultrafast transmission electron microscopy. , 2017, , .		0
93	Development of an ultrafast miniaturized pulsed electron gun. , 2017, , .		Ο
94	Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Science Advances, 2017, 3, eaao4641.	4.7	85
95	Tailored high-harmonic generation in nanostructured semiconductors. , 2017, , .		Ο
96	THz near-field streaking spectroscopy at biased metal nanotips. , 2017, , .		0
97	Real-time detection of soliton interactions in a few-cycle femtosecond oscillator. , 2017, , .		0
98	Controlling the quantum state of free electrons by inelastic optical near-field scattering. , 2017, , .		0
99	Attosecond-precision Coherent Control of Electron Recombination in the Polarization Plane. , 2017, , .		2
100	Nanoscale Imaging of Magnetic Domains using a High-Harmonic Source. , 2017, , .		1
101	Polarization contrast of nanoscale waveguides in high harmonic imaging. Optica, 2016, 3, 239.	4.8	6
102	Structural and magnetic characterization of large area, free-standing thin films of magnetic ion intercalated dichalcogenides Mn _{0.25} TaS ₂ and Fe _{0.25} TaS ₂ . Journal of Physics Condensed Matter, 2016, 28, 356002.	0.7	11
103	Electron pulse reshaping by THz streaking at metal nanotips. , 2016, , .		0
104	Strong-field photoemission in nanotip near-fields: from quiver to sub-cycle electron dynamics. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	31
105	Electrons catch a terahertz wave. Science, 2016, 352, 410-411.	6.0	6
106	Ramsey-type phase control of free-electron beams. Nature Physics, 2016, 12, 1000-1004.	6.5	114
107	Theory of electron energy loss near plasmonic wires, nanorods, and cones. Physical Review B, 2016, 93,	1.1	20
108	Dynamics and Structure of Monolayer Polymer Crystallites on Graphene. Nano Letters, 2016, 16, 6994-7000.	4.5	21

#	Article	IF	CITATIONS
109	Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90â€MHz frame rate. Nature Photonics, 2016, 10, 321-326.	15.6	299
110	Highly Nonlinear and Ultrafast Optical Phenomena in Metallic Nanostructures. Springer Series on Atomic, Optical, and Plasma Physics, 2016, , 233-258.	0.1	0
111	The Start of Femtosecond Mode-locking and Transient Soliton Dynamics Captured with Real-time Spectroscopy. , 2016, , .		Ο
112	Probing the emergence of complex charge-density waves at surfaces by time-resolved low-energy electron diffraction. , 2016, , .		0
113	Few-nanometer femtosecond electron probe pulses in ultrafast transmission electron microscopy. , 2016, , .		Ο
114	Real-space imaging of nanotip plasmons using electron energy loss spectroscopy. Physical Review B, 2015, 92, .	1.1	40
115	Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses. AIP Advances, 2015, 5, .	0.6	36
116	An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons. Applied Physics Letters, 2015, 107, .	1.5	41
117	Ultrafast Transmission Electron Microscopy with nanoscale Photoemitters. Microscopy and Microanalysis, 2015, 21, 1203-1204.	0.2	1
118	An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode. Journal of Applied Physics, 2015, 118, .	1.1	44
119	Real space imaging of nano-tip plasmons using electron energy-loss spectroscopy. , 2015, , .		Ο
120	Quantum coherent interaction of electrons with optical near-fields in an ultrafast electron microscope. , 2015, , .		0
121	Imaging ultrafast dynamics on the nanoscale with THz-STM. , 2015, , .		Ο
122	Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature, 2015, 521, 200-203.	13.7	426
123	Electron-Light Interaction in Optical Near-Fields studied by Ultrafast Transmission Electron Microscopy. , 2015, , .		0
124	Toroidal grating astigmatism of high-harmonics characterized by EUV Hartmann sensor. Optics Express, 2015, 23, 15310.	1.7	3
125	Coherent diffractive imaging beyond the projection approximation: waveguiding at extreme ultraviolet wavelengths. Optics Express, 2015, 23, 19911.	1.7	25
126	Strong-Field Photoemission from Metallic Nanotips. Nano-optics and Nanophotonics, 2015, , 185-192.	0.2	0

#	Article	IF	CITATIONS
127	Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics. New Journal of Physics, 2014, 16, 123005.	1.2	71
128	THz-Controlled Photoelectron Emission from Nanotips. , 2014, , .		0
129	Electron Tunneling and Acceleration at Gold Nanostructures Driven by Ultrashort Mid-Infrared Pulses. , 2014, , .		0
130	Controlling ultrafast photoelectron dynamics in nanostructure-enhanced THz fields. , 2014, , .		0
131	Enhanced THz-near-field controls nanotip photoemission. , 2014, , .		0
132	Terahertz control of nanotip photoemission. Nature Physics, 2014, 10, 432-436.	6.5	165
133	Site-selective laser-triggered electron emission in a field emitter geometry. , 2014, , .		Ο
134	Chemical Vapor Deposition of Graphene on a "Peeled-Off―Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties. ACS Nano, 2014, 8, 8636-8643.	7.3	65
135	Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science, 2014, 345, 200-204.	6.0	167
136	In-Situ Lorentz Microscopy with Femtosecond Optical Illumination. Microscopy and Microanalysis, 2014, 20, 1578-1579.	0.2	1
137	Photoelectron Emission from Resonant Nanoantennas Driven by Femtosecond Mid-infrared Pulses. , 2014, , .		0
138	Measuring single-shot modulation instability and supercontinuum spectra at megahertz rates. Nonlinearity, 2013, 26, R85-R92.	0.6	14
139	Rogue events and noise shaping in nonlinear silicon photonics. Journal of Optics (United Kingdom), 2013, 15, 064001.	1.0	23
140	Generation and Bistability of a Waveguide Nanoplasma Observed by Enhanced Extreme-Ultraviolet Fluorescence. Physical Review Letters, 2013, 111, 085001.	2.9	26
141	Extreme-ultraviolet light generation in plasmonic nanostructures. Nature Physics, 2013, 9, 304-309.	6.5	161
142	Strong-field effects in metallic nanostructures. , 2013, , .		0
143	Field localization and rescattering in tipâ€enhanced photoemission. Annalen Der Physik, 2013, 525, L12.	0.9	37

144 Strong-field photoemission of electron pulses from sharp metallic tips. , 2013, , .

0

#	Article	IF	CITATIONS
145	Photoemission at metallic nanostructures: multiphoton and strong-field dynamics. , 2013, , .		1
146	Ultrafast Single-Shot Measurements in Modulation Instability and Supercontinuum. Optics and Photonics News, 2013, 24, 55.	0.4	1
147	Strong-field photoemission from nanostructuresdriven by few-cycle mid-infrared fields. EPJ Web of Conferences, 2013, 41, 09013.	0.1	0
148	Plasmonic enhancement of High Harmonic Generation revisited: Predominance of Atomic Line Emission. EPJ Web of Conferences, 2013, 41, 01014.	0.1	3
149	Stimulated Modulation Instability in Silicon for Energy Efficient Supercontinuum Generation. , 2012, , .		0
150	Stimulated supercontinuum generation extends broadening limits in silicon. Applied Physics Letters, 2012, 100, .	1.5	13
151	Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study. Journal of Applied Physics, 2012, 112, .	1.1	66
152	Energy-efficient coherent supercontinuum generation in silicon. , 2012, , .		0
153	Photoeffekt an Nanostrukturen: der klassische Grenzfall. Physik in Unserer Zeit, 2012, 43, 165-166.	0.0	0
154	Nanostructure-enhanced atomic line emission. Nature, 2012, 485, E1-E2.	13.7	140
155	Field-driven photoemission from nanostructures quenches the quiver motion. Nature, 2012, 483, 190-193.	13.7	405
156	Fluctuations and correlations in modulation instability. Nature Photonics, 2012, 6, 463-468.	15.6	183
157	Development of an Ultrafast Low Energy Electron Gun for Imaging and Diffraction. , 2012, , .		0
158	Strong-field photoemission from surfaces: Theoretical approaches. Physical Review B, 2011, 84, .	1.1	105
159	Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Physical Review B, 2011, 83, .	1.1	369
160	Rogue waves – towards a unifying concept?: Discussions and debates. European Physical Journal: Special Topics, 2010, 185, 5-15.	1.2	100
161	Real-time measurements, rare events and photon economics. European Physical Journal: Special Topics, 2010, 185, 145-157.	1.2	33
162	Tip-Enhanced Strong-Field Photoemission. Physical Review Letters, 2010, 105, 147601.	2.9	242

#	Article	IF	CITATIONS
163	Seeded Supercontinuum Generation with Optical Parametric Down-Conversion. Physical Review Letters, 2010, 105, 233902.	2.9	53
164	Rare frustration of optical supercontinuum generation. Applied Physics Letters, 2010, 96, 151108.	1.5	24
165	Confined electron emission with femtosecond timing: nonlinearity, localization, enhancement. Proceedings of SPIE, 2010, , .	0.8	0
166	Optical rogue waves and stimulated supercontinuum generation. , 2010, , .		2
167	Near-Field Localization in Plasmonic Superfocusing: A Nanoemitter on a Tip. Nano Letters, 2010, 10, 592-596.	4.5	174
168	Strong-Field Photoelectron Emission from Metal Nanostructures. , 2010, , .		0
169	Rare absences of redshifted energy in supercontinuum generation. , 2010, , .		0
170	Ultraâ€fast nanoâ€optics. Laser and Photonics Reviews, 2009, 3, 483-507.	4.4	67
171	Ultrafast Carrier Dynamics in Graphite. Physical Review Letters, 2009, 102, 086809.	2.9	400
172	Stimulated Supercontinuum Generation. , 2009, , .		1
173	Monsterwellen aus Licht. Physik in Unserer Zeit, 2008, 39, 61-62.	0.0	0
174	Broadband optical near-field microscope for nanoscale absorption spectroscopy of organic materials. Journal of Microscopy, 2008, 229, 197-202.	0.8	5
175	Active Control of Rogue Waves for Stimulated Supercontinuum Generation. Physical Review Letters, 2008, 101, 233902.	2.9	276
176	Light Confinement at Ultrasharp Metallic Tips. Japanese Journal of Applied Physics, 2008, 47, 6051.	0.8	21
177	Stimulated supercontinuum generation: Acceleration, stabilization and control. , 2008, , .		0
178	Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders. Applied Physics Letters, 2008, 93, 073109.	1.5	9
179	Atomic scale structure and optical emission ofAlxGa1â^'xAsâ^•GaAsquantum wells. Physical Review B, 2007, 75, .	1.1	10
180	Fabry-Perot tuning of the band-gap polarity in plasmonic crystals. Physical Review B, 2007, 75, .	1.1	27

#	Article	IF	CITATIONS
181	A nanometer-sized few femtosecond electron source at high repetition rates. , 2007, , .		1
182	Grating-Coupling of Surface Plasmons onto Metallic Tips:  A Nanoconfined Light Source. Nano Letters, 2007, 7, 2784-2788.	4.5	468
183	Localized Multiphoton Emission of Femtosecond Electron Pulses from Metal Nanotips. Physical Review Letters, 2007, 98, 043907.	2.9	340
184	Structural Phase Contrast in Polycrystalline Organic Semiconductor Films Observed by Broadband Near-Field Optical Spectroscopy. Nano Letters, 2007, 7, 998-1002.	4.5	14
185	Ultrafast optical excitations of metallic nanostructures: from light confinement to a novel electron source. New Journal of Physics, 2007, 9, 397-397.	1.2	50
186	Vector field microscopic imaging of light. Nature Photonics, 2007, 1, 53-56.	15.6	173
187	On the concept of imaging nanoscale vector fields. Nature Photonics, 2007, 1, 243-244.	15.6	6
188	Optical rogue waves. Nature, 2007, 450, 1054-1057.	13.7	2,279
189	Diamagnetic shift of disorder-localized excitons in narrowGaAsâ^•AlGaAsquantum wells. Physical Review B, 2006, 74, .	1.1	16
190	Observation of deep level defects within the waveguide of red-emitting high-power diode lasers. Applied Physics Letters, 2006, 88, 133513.	1.5	19
191	Advanced methods for the characterization of few-cycle light pulses: a comparison. Applied Physics B: Lasers and Optics, 2006, 83, 511-519.	1.1	32
192	Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials. Applied Physics B: Lasers and Optics, 2006, 84, 183-189.	1.1	22
193	A Nanometer-sized Femtosecond Electron Source at 80 MHz Repetition Rate. , 2006, , .		0
194	Ultrafast dynamics and near-field optics of light transmission through plasmonic crystals. , 2005, 5825, 54.		1
195	Lichtmanipulation in plasmonischen Kristallen. Physik in Unserer Zeit, 2005, 36, 111-112.	0.0	0
196	Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals. Physical Review Letters, 2005, 94, 113901.	2.9	217
197	Ultrafast Dynamics of Light Transmission Through Plasmonic Crystals. Springer Series in Chemical Physics, 2005, , 650-654.	0.2	1
198	Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate. Optics Express, 2004, 12, 5067.	1.7	18

0

		ONS
199Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System. Physical Review2.92.95Letters, 2003, 91, 143906.	59	

200 Superluminal group velocities in a bulk two-dimensional photonic band gap crystal. , 0, , .