Ruggero G Pensa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/69598/publications.pdf

Version: 2024-02-01

61 837 16 26 papers citations h-index g-index

66 66 819
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals. Gut, 2022, 71, 1302-1314.	6.1	39
2	Analysis and classification of privacy-sensitive content in social media posts. EPJ Data Science, 2022, 11, 12.	1.5	4
3	Attentive Spatial Temporal Graph CNN for Land Cover Mapping From Multi Temporal Remote Sensing Data. IEEE Access, 2021, 9, 23070-23082.	2.6	15
4	Differentially Private Distance Learning in Categorical Data. Data Mining and Knowledge Discovery, 2021, 35, 2050-2088.	2.4	0
5	ESAâ ⁻ †: A generic framework for semi-supervised inductive learning. Neurocomputing, 2021, 447, 102-117.	3.5	7
6	Faecal miRNA profiles associated with age, sex, BMI, and lifestyle habits in healthy individuals. Scientific Reports, 2021, 11, 20645.	1.6	16
7	Ranking by inspiration: a network science approach. Machine Learning, 2020, 109, 1205-1229.	3.4	3
8	Enhancing Graph-Based Semisupervised Learning via Knowledge-Aware Data Embedding. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 5014-5020.	7. 2	5
9	Towards Content Sensitivity Analysis. Lecture Notes in Computer Science, 2020, , 67-79.	1.0	3
10	Privacy Issues in Holistic Recommendations. , 2019, , .		0
11	Network-aware privacy risk estimation in online social networks. Social Network Analysis and Mining, 2019, 9, 1.	1.9	27
12	Comparing Transport Quality Perception among Different Travellers in European Cities through Co-Cluster Analysis. Sustainability, 2019, 11, 7159.	1.6	5
13	A Social Network Simulation Game to Raise Awareness of Privacy Among School Children. IEEE Transactions on Learning Technologies, 2019, 12, 456-469.	2.2	22
14	Parameter-Less Tensor Co-clustering. Lecture Notes in Computer Science, 2019, , 205-219.	1.0	0
15	Deep Triplet-Driven Semi-supervised Embedding Clustering. Lecture Notes in Computer Science, 2019, , 220-234.	1.0	5
16	\$M^3ext{Fusion}\$: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4939-4949.	2.3	67
17	Semi-Supervised Clustering With Multiresolution Autoencoders. , 2018, , .		7
18	Identification of key films and personalities in the history of cinema from a Western perspective. Applied Network Science, 2018, 3, 50.	0.8	6

#	Article	IF	CITATIONS
19	Implementing Participatory Processes in Forestry Training Using Social Network Analysis Techniques. Forests, 2018, 9, 463.	0.9	12
20	ls This Movie a Milestone? Identification ofÂtheÂMost Influential Movies in the History ofÂCinema. Studies in Computational Intelligence, 2018, , 921-934.	0.7	5
21	A Semisupervised Approach to the Detection and Characterization of Outliers in Categorical Data. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 1017-1029.	7.2	31
22	Concept-Enhanced Multi-view Co-clustering of Document Data. Lecture Notes in Computer Science, 2017, , 457-467.	1.0	0
23	A privacy self-assessment framework for online social networks. Expert Systems With Applications, 2017, 86, 18-31.	4.4	33
24	Measuring the Inspiration Rate of Topics inÂBibliographic Networks. Lecture Notes in Computer Science, 2017, , 309-323.	1.0	5
25	Impact of Neighbors on the Privacy of Individuals in Online Social Networks. Procedia Computer Science, 2017, 108, 28-37.	1.2	11
26	Introduction to the special issue on dynamic networks and knowledge discovery. Machine Learning, 2017, 106, 1131-1132.	3.4	1
27	Shaping City Neighborhoods Leveraging Crowd Sensors. Information Systems, 2017, 64, 368-378.	2.4	3
28	TrAnET: Tracking and Analyzing the Evolution of Topics in Information Networks. Lecture Notes in Computer Science, 2017, , 432-436.	1.0	0
29	Modeling the Impact of Privacy on Information Diffusion in Social Networks. Springer Proceedings in Complexity, 2017, , 95-107.	0.2	5
30	Your Privacy, My Privacy? On Leakage Risk Assessment in Online Social Networks. Lecture Notes in Computer Science, 2017, , 3-9.	1.0	1
31	Recommending multimedia visiting paths in cultural heritage applications. Multimedia Tools and Applications, 2016, 75, 3813-3842.	2.6	56
32	A centrality-based measure of user privacy in online social networks. , 2016, , .		5
33	Leveraging Cross-Domain Social Media Analytics to Understand TV Topics Popularity. IEEE Computational Intelligence Magazine, 2016, 11, 10-21.	3.4	8
34	A Semi-supervised Approach to Measuring User Privacy in Online Social Networks. Lecture Notes in Computer Science, 2016, , 392-407.	1.0	6
35	Positive and unlabeled learning in categorical data. Neurocomputing, 2016, 196, 113-124.	3.5	28
36	Multimedia Recommendation and Delivery Strategies. Data-centric Systems and Applications, 2015, , 327-342.	0.2	O

#	Article	IF	CITATIONS
37	Leveraging additional knowledge to support coherent bicluster discovery in gene expression data. Intelligent Data Analysis, 2014, 18, 837-855.	0.4	8
38	Anonymity preserving sequential pattern mining. Artificial Intelligence and Law, 2014, 22, 141-173.	3.0	19
39	Hierarchical co-clustering: off-line and incremental approaches. Data Mining and Knowledge Discovery, 2014, 28, 31-64.	2.4	18
40	Geographic Summaries from Crowdsourced Data. Lecture Notes in Computer Science, 2014, , 477-482.	1.0	3
41	MeSoOnTV., 2013,,.		4
42	Recommending Multimedia Objects in Cultural Heritage Applications. Lecture Notes in Computer Science, 2013, , 257-267.	1.0	12
43	Parameter-less co-clustering for star-structured heterogeneous data. Data Mining and Knowledge Discovery, 2013, 26, 217-254.	2.4	38
44	Tracking and analyzing TV content on the web through social and ontological knowledge. , 2013, , .		4
45	From Context to Distance. ACM Transactions on Knowledge Discovery From Data, 2012, 6, 1-25.	2.5	74
46	Coâ€clustering numerical data under userâ€defined constraints. Statistical Analysis and Data Mining, 2010, 3, 38-55.	1.4	8
47	Social Network Analysis as Knowledge Discovery Process: A Case Study on Digital Bibliography. , 2009,		9
48	Context-Based Distance Learning for Categorical Data Clustering. Lecture Notes in Computer Science, 2009, , 83-94.	1.0	30
49	Parameter-Free Hierarchical Co-clustering by n-Ary Splits. Lecture Notes in Computer Science, 2009, , 580-595.	1.0	15
50	SQUAT: A web tool to mine human, murine and avian SAGE data. BMC Bioinformatics, 2008, 9, 378.	1.2	7
51	Constrained Co-clustering of Gene Expression Data. , 2008, , .		32
52	Clustering formal concepts to discover biologically relevant knowledge from gene expression data. In Silico Biology, 2007, 7, 467-83.	0.4	8
53	Supporting bi-cluster interpretation in 0/1 data by means of local patterns. Intelligent Data Analysis, 2006, 10, 457-472.	0.4	4
54	Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data. Lecture Notes in Computer Science, 2006, , 55-71.	1.0	18

#	Article	IF	CITATIONS
55	Towards Constrained Co-clustering in Ordered 0/1 Data Sets. Lecture Notes in Computer Science, 2006, , 425-434.	1.0	7
56	Contribution to Gene Expression Data Analysis by Means of Set Pattern Mining. Lecture Notes in Computer Science, 2006, , 328-347.	1.0	0
57	Boolean Property Encoding for Local Set Pattern Discovery: An Application to Gene Expression Data Analysis. Lecture Notes in Computer Science, 2005, , 115-134.	1.0	3
58	From Local Pattern Mining to Relevant Bi-cluster Characterization. Lecture Notes in Computer Science, 2005, , 293-304.	1.0	4
59	Towards Fault-Tolerant Formal Concept Analysis. Lecture Notes in Computer Science, 2005, , 212-223.	1.0	22
60	A Methodology for Biologically Relevant Pattern Discovery from Gene Expression Data. Lecture Notes in Computer Science, 2004, , 230-241.	1.0	19
61	A parameter-less algorithm for tensor co-clustering. Machine Learning, 0, , $1.$	3.4	1