Blaž Cigić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6959681/publications.pdf Version: 2024-02-01

<u>Βιλά3/ Οιςιät</u>

#	Article	IF	CITATIONS
1	Rapid weight loss among elite-level judo athletes: methods and nutrition in relation to competition performance. Journal of the International Society of Sports Nutrition, 2022, 19, 380-396.	1.7	7
2	Germinated Buckwheat: Effects of Dehulling on Phenolics Profile and Antioxidant Activity of Buckwheat Seeds. Foods, 2021, 10, 740.	1.9	19
3	Difference in the Attitude of Students and Employees of the University of Ljubljana towards Work from Home and Online Education: Lessons from COVID-19 Pandemic. Sustainability, 2021, 13, 5118.	1.6	26
4	Accumulation and Transformation of Biogenic Amines and Gamma-Aminobutyric Acid (GABA) in Chickpea Sourdough. Foods, 2021, 10, 2840.	1.9	5
5	Preparation of βâ€glucan and antioxidantâ€rich fractions by stone milling of hullâ€less barley. International Journal of Food Science and Technology, 2020, 55, 681-689.	1.3	5
6	Accumulation of Agmatine, Spermidine, and Spermine in Sprouts and Microgreens of Alfalfa, Fenugreek, Lentil, and Daikon Radish. Foods, 2020, 9, 547.	1.9	18
7	Postharvest flavonol and anthocyanin accumulation in three apple cultivars in response to blue-light-emitting diode light. Scientia Horticulturae, 2019, 257, 108711.	1.7	20
8	Bioactive Compounds from Food Byproducts. Journal of Food Quality, 2019, 2019, 1-2.	1.4	1
9	Postharvest light-emitting diode irradiation of sweet cherries (Prunus avium L.) promotes accumulation of anthocyanins. Postharvest Biology and Technology, 2019, 148, 192-199.	2.9	39
10	Relevance and Standardization of <i>In Vitro</i> Antioxidant Assays: ABTS, DPPH, and Folin–Ciocalteu. Journal of Chemistry, 2018, 2018, 1-9.	0.9	58
11	The Methodology Applied in DPPH, ABTS and Folin-Ciocalteau Assays Has a Large Influence on the Determined Antioxidant Potential. Acta Chimica Slovenica, 2017, 64, 491-499.	0.2	34
12	Influence of Yellow Light-Emitting Diodes at 590 nm on Storage of Apple, Tomato and Bell Pepper Fruit. Food Technology and Biotechnology, 2016, 54, 228-235.	0.9	26
13	LC–MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chemistry, 2016, 210, 9-17.	4.2	48
14	The response of aminopeptidases of Phaseolus vulgaris to drought depends on the developmental stage of the leaves. Plant Physiology and Biochemistry, 2016, 109, 326-336.	2.8	9
15	Rapid Estimation of Tocopherol Content in Linseed and Sunflower Oils-Reactivity and Assay. Molecules, 2015, 20, 14777-14790.	1.7	8
16	Mechanical Stress Results in Immediate Accumulation of Glucosinolates in Fresh-Cut Cabbage. Journal of Chemistry, 2015, 2015, 1-7.	0.9	1
17	Influence of metal ions and phospholipids on electrical properties: A case study on pumpkin seed oil. Food Control, 2015, 54, 287-293.	2.8	10
18	Contribution of SO2 to antioxidant potential of white wine. Food Chemistry, 2015, 174, 147-153.	4.2	31

Blaž Cigić

#	Article	IF	CITATIONS
19	Correlation of Basic Oil Quality Indices and Electrical Properties of Model Vegetable Oil Systems. Journal of Agricultural and Food Chemistry, 2013, 61, 11355-11362.	2.4	31
20	DPPH assay of vegetable oils and model antioxidants in protic and aprotic solvents. Talanta, 2013, 109, 13-19.	2.9	46
21	Influence of Solvent Composition on Antioxidant Potential of Model Polyphenols and Red Wines Determined with 2,2-Diphenyl-1-picrylhydrazyl. Journal of Agricultural and Food Chemistry, 2012, 60, 12282-12288.	2.4	13
22	Liposomal stabilization of ascorbic acid in model systems and in food matrices. LWT - Food Science and Technology, 2012, 45, 43-49.	2.5	60
23	Stability and transformation of products formed from dimeric dehydroascorbic acid at low pH. Food Chemistry, 2011, 129, 965-973.	4.2	20
24	A quantitative technique for determining proteases and their substrate specificities and pH optima in crude enzyme extracts. Analytical Biochemistry, 2009, 388, 56-62.	1.1	10
25	Reduction of dehydroascorbic acid at low pH. Journal of Proteomics, 2007, 70, 767-772.	2.4	66
26	How To Motivate Students To Study before They Enter the Lab. Journal of Chemical Education, 2006, 83, 1094.	1.1	34
27	Optimization of growth for the hyperthermophilic archaeon <i>Aeropyrum pernix</i> on a small-batch scale. Canadian Journal of Microbiology, 2005, 51, 805-809.	0.8	19
28	The Residual Pro-Part of Cathepsin C Fulfills the Criteria Required for an Intramolecular Chaperone in Folding and Stabilizing the Human Proenzyme. Biochemistry, 2000, 39, 12382-12390.	1.2	33
29	Location of the binding site for chloride ion activation of cathepsin C. FEBS Journal, 1999, 264, 944-951.	0.2	59
30	Competitive Inhibition of Cathepsin C by Guanidinium Ions and Reexamination of Substrate Inhibition. Biochemical and Biophysical Research Communications, 1999, 258, 6-10.	1.0	8
31	Stoichiometry and heterogeneity of the pro-region chain in tetrameric human cathepsin C. BBA - Proteins and Proteomics, 1998, 1382, 143-150.	2.1	36