Hisashi Hemmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6959535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Pyridoxine 5′-Phosphate Accumulation in Pyridoxal 5′-Phosphate-Binding Protein Deficiency. Journal of Bacteriology, 2022, 204, JB0052121.	1.0	5
2	Identification and biochemical characterization of a heteromeric <i>cis</i> -prenyltransferase from the thermophilic archaeon <i>Archaeoglobus fulgidus</i> . Journal of Biochemistry, 2022, 171, 641-651.	0.9	1
3	Identification and functional analysis of a new type of <i>Z,E</i> â€mixed prenyl reductase from mycobacteria. FEBS Journal, 2022, 289, 4981-4997.	2.2	1
4	Identification and characterization of a serine racemase in the silkworm <i>Bombyx mori.</i> . Journal of Biochemistry, 2022, , .	0.9	2
5	Isopentenyl diphosphate/dimethylallyl diphosphate-specific Nudix hydrolase from the methanogenic archaeon <i>Methanosarcina mazei</i> . Bioscience, Biotechnology and Biochemistry, 2022, 86, 246-253.	0.6	0
6	Crystal structure of mevalonate 3,5-bisphosphate decarboxylase reveals insight into the evolution of decarboxylases in the mevalonate metabolic pathways. Journal of Biological Chemistry, 2022, 298, 102111.	1.6	3
7	A versatile cis-prenyltransferase from Methanosarcina mazei catalyzes both C- and O-prenylations. Journal of Biological Chemistry, 2021, 296, 100679.	1.6	4
8	Urinary <scp>l</scp> - <i>erythro</i> -β-hydroxyasparagine—a novel serine racemase inhibitor and substrate of the Zn2+-dependent <scp>d</scp> -serine dehydratase. Bioscience Reports, 2021, 41, .	1.1	1
9	Total Synthesis and Structure Confirmation of <i>trans</i> -Anhydromevalonate-5-phosphate, a Key Biosynthetic Intermediate of the Archaeal Mevalonate Pathway. Journal of Natural Products, 2021, 84, 2749-2754.	1.5	4
10	Inhibition of glycine cleavage system by pyridoxine 5′â€phosphate causes synthetic lethality inglyA yggSandserA yggSinEscherichia coli. Molecular Microbiology, 2020, 113, 270-284.	1.2	19
11	Construction of an artificial biosynthetic pathway for hyperextended archaeal membrane lipids in the bacterium Escherichia coli. Synthetic Biology, 2020, 5, ysaa018.	1.2	0
12	Mechanism of eukaryotic serine racemase-catalyzed serine dehydration. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140460.	1.1	3
13	Reconstruction of the "Archaeal―Mevalonate Pathway from the Methanogenic Archaeon Methanosarcina mazei in Escherichia coli Cells. Applied and Environmental Microbiology, 2020, 86, .	1.4	19
14	A heteromeric cis-prenyltransferase is responsible for the biosynthesis of glycosyl carrier lipids in Methanosarcina mazei. Biochemical and Biophysical Research Communications, 2019, 520, 291-296.	1.0	10
15	Conserved Pyridoxal 5'-Phosphate-Binding Protein YggS Impacts Amino Acid Metabolism through Pyridoxine 5'-Phosphate in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	26
16	Conversion of Mevalonate 3-Kinase into 5-Phosphomevalonate 3-Kinase by Single Amino Acid Mutations. Applied and Environmental Microbiology, 2019, 85, .	1.4	6
17	Production of Ophthalmic Acid Using Engineered Escherichia coli. Applied and Environmental Microbiology, 2018, 84, .	1.4	8
18	Biosynthetic machinery for C25,C25-diether archaeal lipids from the hyperthermophilic archaeon Aeropyrum pernix. Biochemical and Biophysical Research Communications, 2018, 497, 87-92.	1.0	4

#	Article	IF	CITATIONS
19	Utilization of an intermediate of the methylerythritol phosphate pathway, (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate, as the prenyl donor substrate for various prenyltransferases. Bioscience, Biotechnology and Biochemistry, 2018, 82, 993-1002.	0.6	0
20	Modified mevalonate pathway of the archaeon <i>Aeropyrum pernix</i> proceeds via <i>trans</i> -anhydromevalonate 5-phosphate. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10034-10039.	3.3	39
21	D-Serine Metabolism and Its Importance in Development of Dictyostelium discoideum. Frontiers in Microbiology, 2018, 9, 784.	1.5	6
22	A Single Amino Acid Mutation Converts (R)-5-Diphosphomevalonate Decarboxylase into a Kinase. Journal of Biological Chemistry, 2017, 292, 2457-2469.	1.6	11
23	Identification of enzymes involved in the mevalonate pathway of Flavobacterium johnsoniae. Biochemical and Biophysical Research Communications, 2017, 487, 702-708.	1.0	15
24	Occurrence of the (2R,3S)-Isomer of 2-Amino-3,4-dihydroxybutanoic Acid in the MushroomHypsizygus marmoreus. Journal of Agricultural and Food Chemistry, 2017, 65, 6131-6139.	2.4	5
25	A <i>cis</i> â€prenyltransferase from <i>Methanosarcina acetivorans</i> catalyzes both headâ€toâ€tail and nonheadâ€toâ€tail prenyl condensation. FEBS Journal, 2016, 283, 2369-2383.	2.2	18
26	Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5′-phosphate-binding protein YggS. Journal of Bioscience and Bioengineering, 2016, 122, 689-693.	1.1	19
27	A new member of MocR/GabRâ€ŧype <scp>PLP</scp> â€binding regulator of <scp>d</scp> â€alanylâ€ <scp>d</scp> â€alanine ligase in <i>BrevibacillusÂbrevis</i> . FEBS Journal, 2015, 282, 4201-4217.	2.2	21
28	PEGylated d-serine dehydratase as a d-serine reducing agent. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 34-39.	1.4	1
29	Domain characterization of <i>Bacillus subtilis</i> GabR, a pyridoxal 5′-phosphate-dependent transcriptional regulator. Journal of Biochemistry, 2015, 158, 225-234.	0.9	22
30	A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes. Nature Communications, 2015, 6, 7534.	5.8	61
31	A phytoene desaturase homolog gene from the methanogenic archaeon Methanosarcina acetivorans is responsible for hydroxyarchaeol biosynthesis. Biochemical and Biophysical Research Communications, 2015, 466, 186-191.	1.0	5
32	<i>In Vivo</i> Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Journal of Bacteriology, 2015, 197, 3463-3471.	1.0	4
33	Role of the aminotransferase domain in <scp><i>B</i></scp> <i>acillus subtilis</i> â€ <scp>GabR</scp> , a pyridoxal 5′â€phosphateâ€dependent transcriptional regulator. Molecular Microbiology, 2015, 95, 245-257.	1.2	30
34	(R)-Mevalonate 3-Phosphate Is an Intermediate of the Mevalonate Pathway in Thermoplasma acidophilum. Journal of Biological Chemistry, 2014, 289, 15957-15967.	1.6	40
35	Reaction mechanism of Zn2+-dependent d-serine dehydratase: role of a conserved tyrosine residue interacting with pyridine ring nitrogen of pyridoxal 5′-phosphate. Journal of Biochemistry, 2014, 156, 173-180.	0.9	3
36	A novel geranylgeranyl reductase from the methanogenic archaeon <i><scp>M</scp>ethanosarcinaÂacetivorans</i> displays unique regiospecificity. FEBS Journal, 2014, 281, 3165-3176.	2.2	14

#	Article	IF	CITATIONS
37	Geranylgeranyl Reductase and Ferredoxin from Methanosarcina acetivorans Are Required for the Synthesis of Fully Reduced Archaeal Membrane Lipid in Escherichia coli Cells. Journal of Bacteriology, 2014, 196, 417-423.	1.0	32
38	Catalytic mechanism of serine racemase from Dictyostelium discoideum. Amino Acids, 2013, 44, 1073-1084.	1.2	22
39	Substrate specificity of undecaprenyl diphosphate synthase from the hyperthermophilic archaeon Aeropyrum pernix. Biochemical and Biophysical Research Communications, 2013, 436, 230-234.	1.0	9
40	Biochemical evidence supporting the presence of the classical mevalonate pathway in the thermoacidophilic archaeon Sulfolobus solfataricus. Journal of Biochemistry, 2013, 153, 415-420.	0.9	29
41	Conserved Pyridoxal Protein That Regulates Ile and Val Metabolism. Journal of Bacteriology, 2013, 195, 5439-5449.	1.0	49
42	Enzymatic Assay for <scp>D</scp> -Aspartic Acid Using <scp>D</scp> -Aspartate Oxidase and Oxaloacetate Decarboxylase. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2150-2152.	0.6	9
43	Lysine racemase from a lactic acid bacterium, Oenococcus oeni: structural basis of substrate specificity. Journal of Biochemistry, 2012, 152, 505-508.	0.9	21
44	Quantitative analyses of the behavior of exogenously added bacteria during an acidulocomposting process. Journal of Bioscience and Bioengineering, 2012, 114, 70-72.	1.1	2
45	Substrate-Induced Change in the Quaternary Structure of Type 2 Isopentenyl Diphosphate Isomerase from Sulfolobus shibatae. Journal of Bacteriology, 2012, 194, 3216-3224.	1.0	10
46	Metal ion dependency of serine racemase from Dictyostelium discoideum. Amino Acids, 2012, 43, 1567-1576.	1.2	21
47	Archaeal Phospholipid Biosynthetic Pathway Reconstructed in <i>Escherichia coli</i> . Archaea, 2012, 2012, 1-9.	2.3	19
48	Role of zinc ion for catalytic activity in <scp>d</scp> â€serine dehydratase from <i>Saccharomycesâ€∫cerevisiae</i> . FEBS Journal, 2012, 279, 612-624.	2.2	14
49	Connected cavity structure enables prenyl elongation across the dimer interface in mutated geranylfarnesyl diphosphate synthase from Methanosarcina mazei. Biochemical and Biophysical Research Communications, 2011, 409, 333-337.	1.0	4
50	Simultaneous determination of d-amino acids by the coupling method of d-amino acid oxidase with high-performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3190-3195.	1.2	22
51	Structure and Mutation Analysis of Archaeal Geranylgeranyl Reductase. Journal of Molecular Biology, 2011, 409, 543-557.	2.0	35
52	Alterations in d-amino acid concentrations and microbial community structures during the fermentation of red and white wines. Journal of Bioscience and Bioengineering, 2011, 111, 104-108.	1.1	53
53	Covalent modification of reduced flavin mononucleotide in type-2 isopentenyl diphosphate isomerase by active-site-directed inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20461-20466.	3.3	25
54	ã,¢ã∱¼ã,ã,¢ã«ãŠã'ã,‹è†œè,,,質ç"Ÿå•æ^•éµç´å¦çš,,è¦−ç,1ã•ã,‰. Kagaku To Seibutsu, 2010, 48, 614-621.	0.0	0

#	Article	IF	CITATIONS
55	A highly sensitive enzymatic assay for d- and total serine detection using d-serine dehydratase from Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 2010, 67, 150-154.	1.8	8
56	Biochemical Analysis of a Novel Lipolytic Enzyme YvdO fromBacillus subtilis168. Bioscience, Biotechnology and Biochemistry, 2010, 74, 701-706.	0.6	8
57	Mevalonate Pathway in Bacteria and Archaea. , 2010, , 493-516.		14
58	<i>Bacillus subtilis</i> Spore Coat Protein LipC Is a Phospholipase B. Bioscience, Biotechnology and Biochemistry, 2010, 74, 24-30.	0.6	12
59	Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution. Biochemical and Biophysical Research Communications, 2010, 393, 16-20.	1.0	29
60	The Implication of YggT of <i>Escherichia coli</i> in Osmotic Regulation. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2698-2704.	0.6	30
61	New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase. Journal of Biological Chemistry, 2009, 284, 9160-9167.	1.6	42
62	Effect of mutagenesis at the region upstream from the G(Q/E) motif of three types of geranylgeranyl diphosphate synthase on product chain-length. Journal of Bioscience and Bioengineering, 2009, 107, 235-239.	1.1	4
63	Physiological role of carbon dioxide in spore germination of Clostridium perfringens S40. Journal of Bioscience and Bioengineering, 2009, 108, 477-483.	1.1	5
64	Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of microbial community structure in landfill leachate. Journal of Hazardous Materials, 2009, 164, 1503-1508.	6.5	11
65	The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase requires subunit interaction. FEBS Journal, 2008, 275, 3921-3933.	2.2	19
66	A novel zinc-dependent <scp>D</scp> -serine dehydratase from <i>Saccharomyces cerevisiae</i> . Biochemical Journal, 2008, 409, 399-406.	1.7	50
67	Specific Partial Reduction of Geranylgeranyl Diphosphate by an Enzyme from the Thermoacidophilic Archaeon <i>Sulfolobus acidocaldarius</i> Yields a Reactive Prenyl Donor, Not a Dead-End Product. Journal of Bacteriology, 2008, 190, 3923-3929.	1.0	29
68	Structural and Kinetic Evidence for an Extended Hydrogen-bonding Network in Catalysis of Methyl Group Transfer. Journal of Biological Chemistry, 2007, 282, 6609-6618.	1.6	39
69	A Novel Lipolytic Enzyme, YcsK (LipC), Located in the Spore Coat of Bacillus subtilis , Is Involved in Spore Germination. Journal of Bacteriology, 2007, 189, 2369-2375.	1.0	20
70	Enzymatic assay of d-serine using d-serine dehydratase from Saccharomyces cerevisiae. Analytical Biochemistry, 2007, 371, 167-172.	1.1	37
71	Geranylgeranyl reductase involved in the biosynthesis of archaeal membrane lipids in the hyperthermophilic archaeon Archaeoglobus fulgidus. FEBS Journal, 2007, 274, 805-814.	2.2	29
72	Total Synthesis of Geranylgeranylglyceryl Phosphate Enantiomers:  Substrates for Characterization of 2,3-O-Digeranylgeranylglyceryl Phosphate Synthase. Organic Letters, 2006, 8, 943-946.	2.4	13

#	Article	IF	CITATIONS
73	Microbial diversity in biodegradation and reutilization processes of garbage. Journal of Bioscience and Bioengineering, 2005, 99, 1-11.	1.1	48
74	UDP-glucuronic Acid:Anthocyanin Glucuronosyltransferase from Red Daisy (Bellis perennis) Flowers. Journal of Biological Chemistry, 2005, 280, 899-906.	1.6	108
75	Menaquinone-Specific Prenyl Reductase from the Hyperthermophilic Archaeon Archaeoglobus fulgidus. Journal of Bacteriology, 2005, 187, 1937-1944.	1.0	25
76	Microbacterium natoriense sp. nov., a novel d-aminoacylase-producing bacterium isolated from soil in Natori, Japan. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 661-665.	0.8	25
77	(S)-2,3-Di-O-geranylgeranylglyceryl Phosphate Synthase from the Thermoacidophilic Archaeon Sulfolobus solfataricus. Journal of Biological Chemistry, 2004, 279, 50197-50203.	1.6	60
78	Type 2 isopentenyl diphosphate isomerase from a thermoacidophilic archaeonSulfolobus shibatae. FEBS Journal, 2004, 271, 1087-1093.	0.2	33
79	Molecular biological analysis of microflora in a garbage treatment process under thermoacidophilic conditions. Journal of Bioscience and Bioengineering, 2004, 97, 119-126.	1.1	25
80	Molecular cloning and characterization of a thermostable carboxylesterase from an archaeon, Sulfolobus shibatae DSM5389: Non-linear kinetic behavior of a hormone-sensitive lipase family enzyme. Journal of Bioscience and Bioengineering, 2004, 98, 445-451.	1.1	26
81	Catalytic mechanism of type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase: verification of a redox role of the flavin cofactor in a reaction with no net redox change. Biochemical and Biophysical Research Communications, 2004, 322, 905-910.	1.0	40
82	Introduction of the archaebacterial geranylgeranyl pyrophosphate synthase gene into Chlamydomonas reinhardtii chloroplast. Journal of Bioscience and Bioengineering, 2003, 95, 283-287.	1.1	25
83	An alternative mechanism of product chain-length determination in type III geranylgeranyl diphosphate synthase. FEBS Journal, 2003, 270, 2186-2194.	0.2	49
84	Altering the substrate chain-length specificity of an α-glucosidase. Biochemical and Biophysical Research Communications, 2003, 304, 684-690.	1.0	10
85	Fusion-type lycopene β-cyclase from a thermoacidophilic archaeon Sulfolobus solfataricus. Biochemical and Biophysical Research Communications, 2003, 305, 586-591.	1.0	41
86	Collagenolytic Serine-Carboxyl Proteinase from Alicyclobacillus sendaiensis Strain NTAP-1: Purification, Characterization, Gene Cloning, and Heterologous Expression. Applied and Environmental Microbiology, 2003, 69, 162-169.	1.4	52
87	Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1081-1084.	0.8	67
88	Deciphering the Molecular Basis of the Broad Substrate Specificity of Â-Glucosidase from Bacillus sp. SAM1606. Journal of Biochemistry, 2003, 134, 543-550.	0.9	16
89	Novel Medium-Chain Prenyl Diphosphate Synthase from the Thermoacidophilic Archaeon <i>Sulfolobus solfataricus</i> . Journal of Bacteriology, 2002, 184, 615-620.	1.0	31
90	Change of product specificity of hexaprenyl diphosphate synthase from Sulfolobus solfataricus by introducing mimetic mutations. Biochemical and Biophysical Research Communications, 2002, 297, 1096-1101.	1.0	8

#	Article	IF	CITATIONS
91	Site-specific mutagenesis at positions 272 and 273 of the Bacillus sp. SAM1606 α-glucosidase to screen mutants with altered specificity for oligosaccharide production by transglucosylation. Journal of Molecular Catalysis B: Enzymatic, 2002, 16, 265-274.	1.8	15
92	Dramatic changes in the substrate specificities of prenyltransferase by a single amino acid substitution. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 431-436.	1.8	2
93	Novel sugar phosphotransferase system applicable to the efficient labeling of the compounds synthesized via the non-mevalonate pathway in Escherichia coli. Journal of Bioscience and Bioengineering, 2002, 93, 515-518.	1.1	2
94	Deletion and insertion of a 192-residue peptide in the active-site domain of glycosyl hydrolase family-2 β-galactosidases. Journal of Bioscience and Bioengineering, 2002, 93, 575-583.	1.1	0
95	Novel Sugar Phosphotransferase System Applicable to the Efficient Labeling of the Compounds Synthesized via the Non-Mevalonate Pathway in Escherichia coli Journal of Bioscience and Bioengineering, 2002, 93, 515-518.	1.1	0
96	Cloning, Expression, and Characterization of cis -Polyprenyl Diphosphate Synthase from the Thermoacidophilic Archaeon Sulfolobus acidocaldarius. Journal of Bacteriology, 2001, 183, 401-404.	1.0	31
97	An active-site mutation causes enhanced reactivity and altered regiospecificity of transglucosylation catalyzed by the Bacillus sp. SAM1606 α-glucosidase. Journal of Bioscience and Bioengineering, 2000, 89, 431-437.	1.1	12
98	Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. strain HZM-1. Applied Microbiology and Biotechnology, 2000, 54, 581-588.	1.7	69
99	The role of histidine-114 ofSulfolobus acidocaldariusgeranylgeranyl diphosphate synthase in chain-length determination. FEBS Letters, 2000, 481, 68-72.	1.3	6
100	Overexpression of an Archaeal Geranylgeranyl Diphosphate Synthase inEscherichia coliCells. Bioscience, Biotechnology and Biochemistry, 1998, 62, 1243-1246.	0.6	17
101	Identification of Genes Affecting Lycopene Formation in Escherichia coli Transformed with Carotenoid Biosynthetic Genes: Candidates for Early Genes in Isoprenoid Biosynthesis. Journal of Biochemistry, 1998, 123, 1088-1096.	0.9	40
102	Recognition of Allylic Substrates in Sulfolobus acidocaldarius Geranylgeranyl Diphosphate Synthase: Analysis Using Mutated Enzymes and Artificial Allylic Substrates. Journal of Biochemistry, 1998, 123, 1036-1040.	0.9	11
103	Effects of Random Mutagenesis in a Putative Substrate-Binding Domain of Geranylgeranyl Diphosphate Synthase upon Intermediate Formation and Substrate Specificity. Journal of Biochemistry, 1997, 121, 696-704.	0.9	11
104	Conversion from Farnesyl Diphosphate Synthase to Geranylgeranyl Diphosphate Synthase by Random Chemical Mutagenesis. Journal of Biological Chemistry, 1996, 271, 10087-10095.	1.6	127
105	Conversion of Product Specificity of Archaebacterial Geranylgeranyl-diphosphate Synthase. Journal of Biological Chemistry, 1996, 271, 18831-18837.	1.6	114