Subir Kumar Biswas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6959375/publications.pdf

Version: 2024-02-01

840776 940533 17 559 11 16 citations h-index g-index papers 17 17 17 724 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Surface and Interface Engineering for Nanocellulosic Advanced Materials. Advanced Materials, 2021, 33, e2002264.	21.0	239
2	Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 18884-18893.	6.7	82
3	Optically transparent tough nanocomposites with a hierarchical structure of cellulose nanofiber networks prepared by the Pickering emulsion method. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105811.	7.6	37
4	Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse―Nacre-like Architecture. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30177-30184.	8.0	35
5	UV grafting: surface modification of cellulose nanofibers without the use of organic solvents. Green Chemistry, 2019, 21, 4619-4624.	9.0	28
6	Extremely stiff and strong nanocomposite hydrogels with stretchable cellulose nanofiber/poly(vinyl) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
7	Flexible and transparent chitin/acrylic nanocomposite films with high mechanical strength. Fibers and Polymers, 2015, 16, 774-781.	2.1	17
8	Polyethylenimine-Impregnated Mesoporous Delignified Wood with High Mechanical Strength for CO ₂ /N ₂ Selective Adsorption. ACS Applied Nano Materials, 2020, 3, 5499-5508.	5.0	16
9	Highly Thermalâ€Resilient AgNW Transparent Electrode and Optical Device on Thermomechanically Superstable Cellulose Nanorodâ€Reinforced Nanocomposites. Advanced Optical Materials, 2019, 7, 1900532.	7.3	14
10	Thermally Superstable Cellulosic-Nanorod-Reinforced Transparent Substrates Featuring Microscale Surface Patterns. ACS Nano, 2019, 13, 2015-2023.	14.6	13
11	Physical and mechanical properties of ghora neem (Melia azedarach) plywood. Bangladesh Journal of Scientific and Industrial Research, 2014, 49, 47-52.	0.3	11
12	Physical and mechanical properties of medium density fiber board (MDF) fabricated from banana plant (Musa sapientum) stem and midrib. Journal of the Indian Academy of Wood Science, 2014, 11, 1-4.	0.9	11
13	Development of High Performance Transparent Nanocomposites Reinforced with Nanofibrillated Chitin Extracted from Shrimp Wastes. Journal of Chitin and Chitosan Science, 2013, 1, 138-143.	0.3	10
14	Fabrication of ultrastiff and strong hydrogels by in situ polymerization in layered cellulose nanofibers. Cellulose, 2020, 27, 693-702.	4.9	8
15	Physical and Mechanical Properties of UF Bonded and Without Binding Agent Bagasse MDF. Asian Journal of Applied Sciences, 2013, 7, 45-50.	0.4	7
16	Stiffened Nanocomposite Hydrogels by Using Modified Cellulose Nanofibers via Plug Flow Reactor Method. ACS Sustainable Chemistry and Engineering, 2019, 7, 9092-9096.	6.7	6
17	Enhencement of Life Span of Mahogany (Swietenia macrophylla), Raintree (Albizia saman) and Akashmoni (Acacia auriculiformis) Wood Treating with CCB Preservative. Asian Journal of Applied Sciences, 2013, 7, 38-44.	0.4	O