
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6959341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of sludge-based activated char sorbent with enhanced hydrophobicity for oil spill cleanup. Environmental Technology (United Kingdom), 2023, 44, 1772-1781.	2.2	5
2	Oil Transport Following the <i>Deepwater Horizon</i> Blowout. Annual Review of Marine Science, 2023, 15, .	11.6	5
3	Investigation into the impact of aged microplastics on oil behavior in shoreline environments. Journal of Hazardous Materials, 2022, 421, 126711.	12.4	25
4	A green initiative for oiled sand cleanup using chitosan/rhamnolipid complex dispersion with pH-stimulus response. Chemosphere, 2022, 288, 132628.	8.2	11
5	Modeling oil biodegradation and bioremediation within beaches. Current Opinion in Chemical Engineering, 2022, 35, 100751.	7.8	11
6	Microplastic-oil-dispersant agglomerates in the marine environment: Formation mechanism and impact on oil dispersion. Journal of Hazardous Materials, 2022, 426, 127825.	12.4	21
7	Machine learning-aided causal inference for unraveling chemical dispersant and salinity effects on crude oil biodegradation. Bioresource Technology, 2022, 345, 126468.	9.6	22
8	Cleanup of oiled shorelines using a dual responsive nanoclay/sodium alginate surface washing agent. Environmental Research, 2022, 205, 112531.	7.5	9
9	Treatment of oiled beach sand using a green and responsive washing fluid with nonionic surfactant-modified nanoclay. Journal of Cleaner Production, 2022, 333, 130122.	9.3	10
10	Impact of mixing and resting times on the droplet size distribution and the petroleum hydrocarbons' concentration in diluted bitumen-based water-accommodated fractions (WAFs). Chemosphere, 2022, , 133807.	8.2	3
11	Experimental and modeling studies of the effects of nanoclay on the oil behaviors in a water–sand system. Environmental Science and Pollution Research, 2022, , 1.	5.3	0
12	Physicochemical change and microparticle release from disposable gloves in the aqueous environment impacted by accelerated weathering. Science of the Total Environment, 2022, 832, 154986.	8.0	23
13	A pH-responsive phosphoprotein surface washing fluid for cleaning oiled shoreline: Performance evaluation, biotoxicity analysis, and molecular dynamic simulation. Chemical Engineering Journal, 2022, 437, 135336.	12.7	11
14	Microbubble and nanobubble-based gas flotation for oily wastewater treatment: a review. Environmental Reviews, 2022, 30, 359-379.	4.5	12
15	Bioremediation of Petroleum Hydrocarbons in the Upper Parts of Sandy Beaches. Environmental Science & Technology, 2022, 56, 8124-8131.	10.0	8
16	Buoyant oleophilic magnetic activated carbon nanoparticles for oil spill cleanup. , 2022, 2, 100028.		10
17	Microplastic and oil pollution in oceans: Interactions and environmental impacts. Science of the Total Environment, 2022, 838, 156142.	8.0	17
18	Recent advances in chemical and biological degradation of spilled oil: A review of dispersants application in the marine environment. Journal of Hazardous Materials, 2022, 436, 129260.	12.4	26

#	Article	IF	CITATIONS
19	Exploring the characteristics, performance, and mechanisms of a magnetic-mediated washing fluid for the cleanup of oiled beach sand. Journal of Hazardous Materials, 2022, 438, 129447.	12.4	9
20	Exploring the use of cellulose nanocrystal as surface-washing agent for oiled shoreline cleanup. Journal of Hazardous Materials, 2021, 402, 123464.	12.4	33
21	Interactions between microplastics and oil dispersion in the marine environment. Journal of Hazardous Materials, 2021, 403, 123944.	12.4	42
22	Factors influencing the fate of oil spilled on shorelines: a review. Environmental Chemistry Letters, 2021, 19, 1611-1628.	16.2	48
23	Occurrence and biodegradation of hydrocarbons at high salinities. Science of the Total Environment, 2021, 762, 143165.	8.0	22
24	Formation of oil-particle aggregates: Particle penetration and impact of particle properties and particle-to-oil concentration ratios. Science of the Total Environment, 2021, 760, 144047.	8.0	23
25	Space–time variations of sea ice in Bohai Sea in the winter of 2009–2010 simulated with a coupled ocean and ice model. Journal of Oceanography, 2021, 77, 243-258.	1.7	8
26	Exploring the effects of microalgal biomass on the oil behavior in a sand-water system. Environmental Science and Pollution Research, 2021, 28, 32985-32994.	5.3	3
27	A framework for the evaluation and selection of shoreline surface washing agents in oil spill response. Journal of Environmental Management, 2021, 287, 112346.	7.8	19
28	Dispersants as marine oil spill treating agents: a review on mesoscale tests and field trials. Environmental Systems Research, 2021, 10, .	3.7	28
29	Crude oil biodegradation in upper and supratidal seashores. Journal of Hazardous Materials, 2021, 416, 125919.	12.4	16
30	Recent advances in developing cellulosic sorbent materials for oil spill cleanup: A state-of-the-art review. Journal of Cleaner Production, 2021, 311, 127630.	9.3	54
31	A cross-comparison of biosurfactants as marine oil spill dispersants: Governing factors, synergetic effects and fates. Journal of Hazardous Materials, 2021, 416, 126122.	12.4	34
32	Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. Journal of Hazardous Materials, 2021, 417, 126036.	12.4	225
33	Access-dispersion-recovery strategy for enhanced mitigation of heavy crude oil pollution using magnetic nanoparticles decorated bacteria. Bioresource Technology, 2021, 337, 125404.	9.6	18
34	Exploring the use of alginate hydrogel coating as a new initiative for emergent shoreline oiling prevention. Science of the Total Environment, 2021, 797, 149234.	8.0	12
35	Formation of oil-particle aggregates: Impacts of mixing energy and duration. Science of the Total Environment, 2021, 795, 148781.	8.0	20
36	Hypersaline Pore Water in Gulf of Mexico Beaches Prevented Efficient Biodegradation of Deepwater Horizon Beached Oil. Environmental Science & Technology, 2021, 55, 13792-13801.	10.0	14

#	Article	IF	CITATIONS
37	Experimental Investigation of Oil Droplet Size Distribution in Underwater Oil and Oil-Air Jet. Marine Technology Society Journal, 2021, 55, 196-209.	0.4	6
38	Impact of Microplastics on Oil Dispersion Efficiency in the Marine Environment. Sustainability, 2021, 13, 13752.	3.2	8
39	Fate of diluted bitumen spilled in the coastal waters of British Columbia, Canada. Marine Pollution Bulletin, 2020, 150, 110691.	5.0	20
40	Hydrodynamics and Mixing Characteristics in Different-Size Aspirator Bottles for Water-Accommodated Fraction Tests. Journal of Environmental Engineering, ASCE, 2020, 146, .	1.4	6
41	Use of surface-washing agents for the treatment of oiled shorelines: Research advancements, technical applications and future challenges. Chemical Engineering Journal, 2020, 391, 123565.	12.7	33
42	Investigation into the oil removal from sand using a surface washing agent under different environmental conditions. Journal of Environmental Management, 2020, 275, 111232.	7.8	30
43	Modeling oil dispersion under breaking waves.ÂPart I:ÂWave hydrodynamics. Environmental Fluid Mechanics, 2020, 20, 1527-1551.	1.6	14
44	Transport of Oil Droplets in the Upper Ocean: Impact of the Eddy Diffusivity. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015727.	2.6	24
45	Numerical Study of Solute Transport in Heterogeneous Beach Aquifers Subjected to Tides. Water Resources Research, 2020, 56, e2019WR026430.	4.2	27
46	Characterization of Pore Water Flow in 3â€Ð Heterogeneous Permeability Fields. Geophysical Research Letters, 2020, 47, e2019GL086879.	4.0	10
47	Oil Droplet Dispersion under a Deep-Water Plunging Breaker: Experimental Measurement and Numerical Modeling. Journal of Marine Science and Engineering, 2020, 8, 230.	2.6	15
48	Metagenomic and metatranscriptomic responses of natural oil degrading bacteria in the presence of dispersants. Environmental Microbiology, 2019, 21, 2307-2319.	3.8	29
49	A Review on the Factors Affecting the Deposition, Retention, and Biodegradation of Oil Stranded on Beaches and Guidelines for Designing Laboratory Experiments. Current Pollution Reports, 2019, 5, 407-423.	6.6	29
50	Was the Deepwater Horizon Well Discharge Churn Flow? Implications on the Estimation of the Oil Discharge and Droplet Size Distribution. Geophysical Research Letters, 2018, 45, 2396-2403.	4.0	29
51	Brominated Flame Retardants, Microplastics, and Biocides in the Marine Environment: Recent Updates of Occurrence, Analysis, and Impacts. Advances in Marine Biology, 2018, 81, 167-211.	1.4	15
52	Estimating the Usefulness of Chemical Dispersant to Treat Surface Spills of Oil Sands Products. Journal of Marine Science and Engineering, 2018, 6, 128.	2.6	12
53	Droplet and bubble formation of combined oil and gas releases in subsea blowouts. Marine Pollution Bulletin, 2017, 120, 203-216.	5.0	42
54	A New Mechanism of Sediment Attachment to Oil in Turbulent Flows: Projectile Particles. Environmental Science & Technology, 2017, 51, 11020-11028.	10.0	35

#	Article	IF	CITATIONS
55	Oil jet with dispersant: Macroâ€scale hydrodynamics and tip streaming. AICHE Journal, 2017, 63, 5222-5234.	3.6	21
56	Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria. ISME Journal, 2017, 11, 2793-2808.	9.8	114
57	Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil. Chemosphere, 2017, 166, 246-254.	8.2	51
58	PREDICTION OF OIL DROPLET MOVEMENT AND SIZE DISTRIBUTION: LAGRANGIAN METHOD AND VDROP-J MODEL. International Oil Spill Conference Proceedings, 2017, 2017, 1194-1211.	0.1	5
59	Effects of tip streaming on the prediction of droplet size distribution in the presence of dispersants during subsea blowouts. International Oil Spill Conference Proceedings, 2017, 2017, 1212-1229.	0.1	1
60	Experimental and numerical investigation of the formation of Oil Particle Aggregates (OPA). International Oil Spill Conference Proceedings, 2017, 2017, 1911-1930.	0.1	1
61	Interaction of gas bubbles and oil droplets in subsea oil and gas blowouts – a new development of VDROP-J model International Oil Spill Conference Proceedings, 2017, 2017, 2017-194.	0.1	0
62	Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiology Ecology, 2016, 92, fiw130.	2.7	68
63	Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident. Applied and Environmental Microbiology, 2015, 81, 5855-5866.	3.1	64
64	Evaluation of Numerical Modeling Methods for the Management of Produced Water Discharges in the Coastal Region with a Canadian Case Study. Environmental Modeling and Assessment, 2014, 19, 57-70.	2.2	1
65	Flume tank studies to elucidate the fate and behavior of diluted bitumen spilled at sea. Marine Pollution Bulletin, 2014, 83, 32-37.	5.0	57
66	VDROP: A comprehensive model for droplet formation of oils and gases in liquids - Incorporation of the interfacial tension and droplet viscosity. Chemical Engineering Journal, 2014, 253, 93-106.	12.7	114
67	Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea. Marine Pollution Bulletin, 2013, 73, 314-318.	5.0	113
68	Role of the hydrophobicity of mineral fines in the formation of oil–mineral aggregates. Canadian Journal of Chemical Engineering, 2013, 91, 698-703.	1.7	6
69	Modelling the Transport of Oil–Mineral-Aggregates (OMAs) in the Marine Environment and Assessment of Their Potential Risks. Environmental Modeling and Assessment, 2011, 16, 61-75.	2.2	29
70	Impacts of Iron, Nutrients, and Mineral Fines on Anaerobic Biodegradation of Canola Oil in Freshwater Sediments. Soil and Sediment Contamination, 2010, 19, 244-259.	1.9	3
71	A Method for Assessing Environmental Risks of Oil-Mineral-Aggregate to Benthic Organisms. Human and Ecological Risk Assessment (HERA), 2010, 16, 762-782.	3.4	11
72	Evaluating Chemical Dispersant Efficacy in an Experimental Wave Tank: 2—Significant Factors Determining <i>In Situ</i> Oil Droplet Size Distribution. Environmental Engineering Science, 2009, 26, 1407-1418.	1.6	51

#	Article	IF	CITATIONS
73	Modeling the dispersion of drilling muds using the bblt model: the effects of settling velocity. Environmental Modeling and Assessment, 2009, 14, 585-594.	2.2	7
74	Formation and Vertical Mixing of Oil Droplets Resulting from Oil Slick Under Breaking Waves—A Modeling Study. Environmental Forensics, 2009, 10, 347-353.	2.6	7
75	EFFECT OF DISPERSANT ON THE COMPOSITION OF THE WATER-ACCOMMODATED FRACTION OF CRUDE OIL AND ITS TOXICITY TO LARVAL MARINE FISH. Environmental Toxicology and Chemistry, 2005, 24, 1496.	4.3	116
76	A COMPREHENSIVE NUMERICAL APPROACH TO PREDICT OIL-MINERAL AGGREGATE (OMA) FORMATION FOLLOWING OIL SPILLS IN AQUATIC ENVIRONMENTS. International Oil Spill Conference Proceedings, 2005, 2005, 873-877.	0.1	20
77	Habitat Recovery in an Oil-Contaminated Salt Marsh Following Biorestoration Treatments. International Oil Spill Conference Proceedings, 2003, 2003, 977-982.	0.1	1
78	Microbial Population Analysis as a Measure of Ecosystem Restoration. Bioremediation Journal, 2002, 6, 283-296.	2.0	12
79	Bioremediation and Biorestoration of a Crube Oil-Contaminated Freshwater Wetland on the St.Lawrence River. Bioremediation Journal, 2002, 6, 261-281.	2.0	54
80	The Influence of Salinity on Oil–Mineral Aggregate Formation. Spill Science and Technology Bulletin, 2002, 8, 65-71.	0.4	71