
Martin James Stoddart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6959224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration. Bioactive Materials, 2022, 9, 281-298.	15.6	12
2	Timing of postoperative weightbearing in the treatment of traumatic chondral injuries of the knee in athletes - A systematic review of current concepts in clinical practice. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 2022, 27, 1-8.	1.0	1
3	Clinically relevant preclinical animal models for testing novel cranioâ€maxillofacial bone 3Dâ€printed biomaterials. Clinical and Translational Medicine, 2022, 12, e690.	4.0	15
4	Optimization of loading protocols for tissue engineering experiments. Scientific Reports, 2022, 12, 5094.	3.3	2
5	Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Acta Biomaterialia, 2022, 143, 253-265.	8.3	11
6	Computed Tomography-Based Investigation on the Effects of Intravenous Bisphosphonate Administration on Tooth Growth in a Minipig Animal Model. Medicina (Lithuania), 2022, 58, 778.	2.0	0
7	Interleukin-1 receptor antagonist enhances the therapeutic efficacy of a low dose of rhBMP-2 in a weight-bearing rat femoral defect model. Acta Biomaterialia, 2022, 149, 189-197.	8.3	3
8	Effect of the Addition Frequency of 5-Azacytidine in Both Micro- and Macroscale Cultures. Cellular and Molecular Bioengineering, 2021, 14, 121-130.	2.1	1
9	The Role of Noncoding RNAs in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Craniomaxillofacial Trauma & Reconstruction Open, 2021, 6, 247275122199922.	0.2	4
10	Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. Journal of Functional Morphology and Kinesiology, 2021, 6, 6.	2.4	10
11	Dexamethasone Induces Changes in Osteogenic Differentiation of Human Mesenchymal Stromal Cells via SOX9 and PPARG, but Not RUNX2. International Journal of Molecular Sciences, 2021, 22, 4785.	4.1	18
12	Crosstalk Between Mesenchymal Stromal Cells and Chondrocytes: The Hidden Therapeutic Potential for Cartilage Regeneration. Stem Cell Reviews and Reports, 2021, 17, 1647-1665.	3.8	8
13	Dental Robotics: A Disruptive Technology. Sensors, 2021, 21, 3308.	3.8	29
14	Effect of expansion media and fibronectin coating on growth and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Scientific Reports, 2021, 11, 13089.	3.3	10
15	Non-union bone fractures. Nature Reviews Disease Primers, 2021, 7, 57.	30.5	122
16	Mesenchymal Stromal Cell Differentiation for Generating Cartilage and Bone-Like Tissues In Vitro. Cells, 2021, 10, 2165.	4.1	3
17	Effect of cyclic mechanical loading on immunoinflammatory microenvironment in biofabricating hydroxyapatite scaffold for bone regeneration. Bioactive Materials, 2021, 6, 3097-3108.	15.6	29
18	Multiâ€Disciplinary Approaches for Cellâ€Based Cartilage Regeneration. Journal of Orthopaedic Research, 2020. 38. 463-472.	2.3	14

#	Article	IF	CITATIONS
19	Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. American Journal of Sports Medicine, 2020, 48, 210-221.	4.2	36
20	Systemic Manifestations of the Periodontal Disease: A Bibliometric Review. Molecules, 2020, 25, 4508.	3.8	24
21	Inhibition of hypertrophy and improving chondrocyte differentiation by MMP-13 inhibitor small molecule encapsulated in alginate-chondroitin sulfate-platelet lysate hydrogel. Stem Cell Research and Therapy, 2020, 11, 436.	5.5	18
22	Editorial: MSC Signaling in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 614561.	4.1	1
23	Stable Reference Genes for qPCR Analysis in BM-MSCs Undergoing Osteogenic Differentiation within 3D Hyaluronan-Based Hydrogels. International Journal of Molecular Sciences, 2020, 21, 9195.	4.1	6
24	Applications of Bone Morphogenetic Proteins in Dentistry: A Bibliometric Analysis. BioMed Research International, 2020, 2020, 1-12.	1.9	10
25	Innovative Tissueâ€Engineered Strategies for Osteochondral Defect Repair and Regeneration: Current Progress and Challenges. Advanced Healthcare Materials, 2020, 9, e2001008.	7.6	57
26	Three-Dimensional <i>In Vitro</i> Staphylococcus aureus Abscess Communities Display Antibiotic Tolerance and Protection from Neutrophil Clearance. Infection and Immunity, 2020, 88, .	2.2	16
27	Non-viral Gene Delivery of Interleukin-1 Receptor Antagonist Using Collagen-Hydroxyapatite Scaffold Protects Rat BM-MSCs From IL-11²-Mediated Inhibition of Osteogenesis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 582012.	4.1	10
28	A Drug Holiday Reduces the Frequency and Severity of Medicationâ€Related Osteonecrosis of the Jaw in a Minipig Model. Journal of Bone and Mineral Research, 2020, 35, 2179-2192.	2.8	33
29	Current Concepts of Osteomyelitis. American Journal of Pathology, 2020, 190, 1151-1163.	3.8	61
30	Predicting and Promoting Human Bone Marrow MSC Chondrogenesis by Way of TGFÎ ² Receptor Profiles: Toward Personalized Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 618.	4.1	9
31	Taking the Next Steps in Regenerative Rehabilitation: Establishment of a New Interdisciplinary Field. Archives of Physical Medicine and Rehabilitation, 2020, 101, 917-923.	0.9	24
32	Functional Biomaterials for Bone Regeneration: A Lesson in Complex Biology. Advanced Functional Materials, 2020, 30, 1909874.	14.9	122
33	Sodium Hyaluronate Supplemented Culture Media as a New hMSC Chondrogenic Differentiation Media-Model for in vitro/ex vivo Screening of Potential Cartilage Repair Therapies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 243.	4.1	18
34	Differential Regulation of circRNA, miRNA, and piRNA during Early Osteogenic and Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Cells, 2020, 9, 398.	4.1	43
35	Phenotypic Characterization of Bone Marrow Mononuclear Cells and Derived Stromal Cell Populations from Human Iliac Crest, Vertebral Body and Femoral Head. International Journal of Molecular Sciences, 2019, 20, 3454.	4.1	34
36	BMP2 and TGF-Î ² Cooperate Differently during Synovial-Derived Stem-Cell Chondrogenesis in a Dexamethasone-Dependent Manner. Cells, 2019, 8, 636.	4.1	21

MARTIN JAMES STODDART

#	Article	IF	CITATIONS
37	Cell detachment rapidly induces changes in noncoding RNA expression in human mesenchymal stromal cells. BioTechniques, 2019, 67, 286-293.	1.8	9
38	Human umbilical cordâ€derived scaffolds for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 1793-1802.	4.0	20
39	Shear and Dynamic Compression Modulates the Inflammatory Phenotype of Human Monocytes in vitro. Frontiers in Immunology, 2019, 10, 383.	4.8	17
40	Medication-related osteonecrosis of the jaw in a minipig model: Parameters for developing a macroscopic, radiological, and microscopic grading scheme. Journal of Cranio-Maxillo-Facial Surgery, 2019, 47, 1162-1169.	1.7	10
41	Calcium Polyphosphate Nanoparticles Act as an Effective Inorganic Phosphate Source during Osteogenic Differentiation of Human Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 5801.	4.1	16
42	Regulation of Inflammatory Response in Human Osteoarthritic Chondrocytes by Novel Herbal Small Molecules. International Journal of Molecular Sciences, 2019, 20, 5745.	4.1	19
43	Articular fibrocartilage - Why does hyaline cartilage fail to repair?. Advanced Drug Delivery Reviews, 2019, 146, 289-305.	13.7	213
44	Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine. Journal of Orthopaedic Research, 2019, 37, 1263-1269.	2.3	18
45	Chasing Chimeras – The elusive stable chondrogenic phenotype. Biomaterials, 2019, 192, 199-225.	11.4	32
46	Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. Journal of Orthopaedic Research, 2018, 36, 52-63.	2.3	160
47	Articular Cartilage Repair of the Knee in Children and Adolescents. Orthopaedic Journal of Sports Medicine, 2018, 6, 232596711876019.	1.7	46
48	A doxycycline inducible, adenoviral bone morphogenetic protein-2 gene delivery system to bone. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e106-e118.	2.7	18
49	Human primary osteoblast behaviour on microrough zirconia-toughened alumina and on selectively etched microrough zirconia-toughened alumina. Journal of the European Ceramic Society, 2018, 38, 927-937.	5.7	14
50	Autologous Chondrocyte Implantation in Osteoarthritic Surroundings: TNFα and Its Inhibition by Adalimumab in a Knee-Specific Bioreactor. American Journal of Sports Medicine, 2018, 46, 431-440.	4.2	16
51	Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomaterialia, 2018, 65, 1-20.	8.3	427
52	Parathyroid Hormone-Related Protein Gradients Affect the Progression of Mesenchymal Stem Cell Chondrogenesis and Hypertrophy. Tissue Engineering - Part A, 2018, 24, 849-859.	3.1	8
53	Environmental Influences on Stem Cell Behavior. Stem Cells International, 2018, 2018, 1-2.	2.5	1
54	A Perfusion Culture System for Assessing Bone Marrow Stromal Cell Differentiation on PLGA Scaffolds for Bone Repair. Frontiers in Bioengineering and Biotechnology, 2018, 6, 161.	4.1	19

#	Article	IF	CITATIONS
55	Improved Chondrogenic Differentiation of rAAV SOX9-Modified Human MSCs Seeded in Fibrin-Polyurethane Scaffolds in a Hydrodynamic Environment. International Journal of Molecular Sciences, 2018, 19, 2635.	4.1	18
56	Phenotype and Viability of MLO-Y4 Cells Is Maintained by TGFβ3 in a Serum-Dependent Manner within a 3D-Co-Culture with MG-63 Cells. International Journal of Molecular Sciences, 2018, 19, 1932.	4.1	5
57	Regenerative Rehabilitation of the Musculoskeletal System. Journal of the American Academy of Orthopaedic Surgeons, The, 2018, 26, e321-e323.	2.5	7
58	New insight into functional limb regeneration: A to Z approaches. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1925-1943.	2.7	5
59	State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnology Advances, 2018, 36, 1855-1869.	11.7	15
60	Transcriptional activation of ENPP1 by osterix in osteoblasts and osteocytes. , 2018, 36, 1-14.		14
61	The calcification potential of human MSCs can be enhanced by interleukin-1 <i>β</i> in osteogenic medium. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 564-571.	2.7	20
62	Investigating the interaction between Runx2 and PRB during in vitro chondrogenesis and osteogenesis of human mesenchymal stromal cells. Osteoarthritis and Cartilage, 2017, 25, S166.	1.3	0
63	Mesenchymal Stem Cell-Based Cartilage Regeneration Approach and Cell Senescence: Can We Manipulate Cell Aging and Function?. Tissue Engineering - Part B: Reviews, 2017, 23, 529-539.	4.8	76
64	Mechanical Signals as Regulators of Cartilage Degeneration and Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2017, 25, e87-e89.	2.5	4
65	Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Scientific Reports, 2017, 7, 45018.	3.3	77
66	Further development of the MRONJ minipig large animal model. Journal of Cranio-Maxillo-Facial Surgery, 2017, 45, 1503-1514.	1.7	34
67	Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading. Journal of the Royal Society Interface, 2017, 14, 20170255.	3.4	14
68	Joint mimicking mechanical load activates TGFβ1 in fibrin-poly(ester-urethane) scaffolds seeded with mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2663-2666.	2.7	40
69	Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2912-2921.	2.7	63
70	The "Journal of Functional Morphology and Kinesiology―Journal Club Series: Highlights on Recent Papers in Articular Cartilage Tissue Engineering and Mechanical Stimulation. Journal of Functional Morphology and Kinesiology, 2016, 1, 162-166.	2.4	0
71	Tissue engineering and regenerative approaches to improving the healing of large bone defects. , 2016, 32, 87-110.		78
72	Monitoring live human mesenchymal stromal cell differentiation and subsequent selection using fluorescent RNA-based probes. Scientific Reports, 2016, 6, 26014.	3.3	13

#	Article	IF	CITATIONS
73	Why does bone have TERM limits?. Injury, 2016, 47, 1159-1161.	1.7	6
74	<i>In Situ</i> Tissue Engineering: Seducing the Body to Regenerate. Tissue Engineering - Part A, 2016, 22, 1061-1062.	3.1	11
75	Biocomposites used in Orthopedic Applications: Trends in Biocompatibility Assays. , 2016, , 785-818.		0
76	Zoledronate induces bisphosphonate-related osteonecrosis of the jaw in osteopenic sheep. Clinical Oral Investigations, 2016, 20, 31-38.	3.0	14
77	Differences in human mesenchymal stem cell secretomes during chondrogenic induction. , 2016, 31, 221-235.		30
78	A surprisingly poor correlation between in vitro and in vivo testing of biomaterials for bone regeneration: results of a multicentre analysis. , 2016, 31, 312-322.		103
79	Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2. PLoS ONE, 2015, 10, e0136229.	2.5	38
80	Effect of Short-Term Stimulation with Interleukin-1 <i>β</i> and Differentiation Medium on Human Mesenchymal Stromal Cell Paracrine Activity in Coculture with Osteoblasts. BioMed Research International, 2015, 2015, 1-16.	1.9	15
81	Three-dimensional culture and characterization of mononuclear cells from human bone marrow. Cytotherapy, 2015, 17, 458-472.	0.7	14
82	Zoledronate induces osteonecrosis of the jaw in sheep. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 1133-1138.	1.7	13
83	Mesenchymal Stem Cells as a Source of Repair Cytokines. Journal of the American Academy of Orthopaedic Surgeons, The, 2015, 23, 452-453.	2.5	10
84	Biocomposites used in Orthopedic Applications: Trends in Biocompatibility Assays. , 2015, , 1-27.		0
85	Induction of Osteogenic Differentiation in Human Mesenchymal Stem Cells by Crosstalk with Osteoblasts. BioResearch Open Access, 2015, 4, 121-130.	2.6	28
86	<i>In Vitro</i> Osteogenic Potential of Human Mesenchymal Stem Cells Is Predicted by <i>Runx2/Sox9</i> Ratio. Tissue Engineering - Part A, 2015, 21, 115-123.	3.1	83
87	Cells and secretome – towards endogenous cell re-activation for cartilage repair. Advanced Drug Delivery Reviews, 2015, 84, 135-145.	13.7	35
88	Mesenchymal Stem Cells Derived from Human Bone Marrow. Methods in Molecular Biology, 2015, 1340, 41-52.	0.9	53
89	Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3â€D constructs for cartilage tissue engineering. Bioelectromagnetics, 2014, 35, 116-128.	1.6	27

90 Bioreactor Tissue Engineering for Cartilage Repair. , 2014, , 79-97.

#	Article	IF	CITATIONS
91	A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. Journal of Biomedical Materials Research - Part A, 2014, 102, 2636-2643.	4.0	173
92	Particulate cartilage under bioreactor-induced compression and shear. International Orthopaedics, 2014, 38, 1105-1111.	1.9	33
93	Concise Review: Bone Marrow-Derived Mesenchymal Stem Cells Change Phenotype Following In Vitro Culture: Implications for Basic Research and the Clinic. Stem Cells, 2014, 32, 1713-1723.	3.2	262
94	Deciphering Mechanical Regulation of Chondrogenesis in Fibrin–Polyurethane Composite Scaffolds Enriched with Human Mesenchymal Stem Cells: A Dual Computational and Experimental Approach. Tissue Engineering - Part A, 2014, 20, 1197-1212.	3.1	14
95	Trabecular Bone Adaptation to Low-Magnitude High-Frequency Loading in Microgravity. PLoS ONE, 2014, 9, e93527.	2.5	4
96	Role and regulation of RUNX2 in osteogenesis. , 2014, 28, 269-286.		452
97	Enhancing inflammatory and chemotactic signals to regulate bone regeneration. , 2014, 28, 320-334.		31
98	Chondrogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells Is Modulated by Complex Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone Morphogenetic Protein 2. Tissue Engineering - Part A, 2013, 19, 1285-1294.	3.1	41
99	Role of HOXA9 and VEZF1 in Endothelial Biology. Journal of Vascular Research, 2013, 50, 265-278.	1.4	26
100	The use of Reamer Irrigator Aspirator (RIA) autograft harvest in the treatment of critical-sized iliac wing defects in sheep: Investigation of dexamethasone and beta-tricalcium phosphate augmentation. Bone, 2013, 53, 554-565.	2.9	5
101	Enhanced Adenovirus Transduction of hMSCs Using 3D Hydrogel Cell Carriers. Molecular Biotechnology, 2013, 53, 207-216.	2.4	28
102	Bioreactor-Induced Chondrocyte Maturation Is Dependent on Cell Passage and Onset of Loading. Cartilage, 2013, 4, 165-176.	2.7	19
103	Retroviral-mediated overexpression of human bone morphogenetic protein 2 affects human mesenchymal stem cells during monolayer proliferation: A cautionary note. Electronic Journal of Biotechnology, 2013, 16, .	2.2	2
104	Mesenchymal stem cell chondrogenesis: composite growth factor–bioreactor synergism for human stem cell chondrogenesis. Regenerative Medicine, 2013, 8, 157-170.	1.7	10
105	The Effect of Dexamethasone and Triiodothyronine on Terminal Differentiation of Primary Bovine Chondrocytes and Chondrogenically Differentiated Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e72973.	2.5	28
106	Tissue engineering for articular cartilage repair $\hat{a} \in $ the state of the art. , 2013, 25, 248-267.		305
107	Homing of Mesenchymal Stem Cells in Induced Degenerative Intervertebral Discs in a Whole Organ Culture System. Spine, 2012, 37, 1865-1873.	2.0	91
108	WST-8 Analysis of Cell Viability During Osteogenesis of Human Mesenchymal Stem Cells. Methods in Molecular Biology, 2011, 740, 21-25.	0.9	14

#	Article	IF	CITATIONS
109	Cell Viability Assays: Introduction. Methods in Molecular Biology, 2011, 740, 1-6.	0.9	178
110	Mammalian Cell Viability. Methods in Molecular Biology, 2011, , .	0.9	43
111	Physical Stimulation of Chondrogenic Cells In Vitro: A Review. Clinical Orthopaedics and Related Research, 2011, 469, 2764-2772.	1.5	147
112	The role of retinoic acid receptor inhibitor LE135 on the osteochondral differentiation of human bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 2011, 112, 963-970.	2.6	4
113	Varying Regional Topology Within Knee Articular Chondrocytes Under Simulated <i>In Vivo</i> Conditions. Tissue Engineering - Part A, 2011, 17, 451-461.	3.1	22
114	Viability Assessment of Osteocytes Using Histological Lactate Dehydrogenase Activity Staining on Human Cancellous Bone Sections. Methods in Molecular Biology, 2011, 740, 141-148.	0.9	15
115	Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF $\hat{\mathfrak{sl}}^2$ pathway. Journal of Cellular and Molecular Medicine, 2010, 14, 1338-1346.	3.6	170
116	A rapid method for the generation of uniform acellular bone explants: a technical note. Journal of Orthopaedic Surgery and Research, 2010, 5, 32.	2.3	4
117	Improving Chondrogenesis: Potential and Limitations of <i>SOX9</i> Gene Transfer and Mechanical Stimulation for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 1845-1855.	3.1	91
118	Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in Fibrin–Polyurethane Composites Is Modulated by Frequency and Amplitude of Dynamic Compression and Shear Stress. Tissue Engineering - Part A, 2010, 16, 575-584.	3.1	129
119	Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in Fibrin–Polyurethane Composites. Tissue Engineering - Part A, 2009, 15, 1729-1737.	3.1	86
120	Physicobiochemical Synergism Through Gene Therapy and Functional Tissue Engineering for <i>In Vitro</i> Chondrogenesis. Tissue Engineering - Part A, 2009, 15, 2513-2524.	3.1	28
121	Statinâ€induced calcification in human mesenchymal stem cells is cell death related. Journal of Cellular and Molecular Medicine, 2009, 13, 4465-4473.	3.6	43
122	Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury, 2009, 40, S95-S102.	1.7	75
123	TGF <i>β</i> ₃ and loading increases osteocyte survival in human cancellous bone cultured <i>ex vivo</i> . Cell Biochemistry and Function, 2009, 27, 23-29.	2.9	18
124	Cells and biomaterials in cartilage tissue engineering. Regenerative Medicine, 2009, 4, 81-98.	1.7	115
125	Epsilon-Aminocaproic Acid Is a Useful Fibrin Degradation Inhibitor for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 2309-2313.	3.1	45
126	An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials, 2008, 29, 438-447.	11.4	131

#	Article	IF	CITATIONS
127	A simple, lanthanide-based method to enhance the transduction efficiency of adenovirus vectors. Gene Therapy, 2008, 15, 357-363.	4.5	21
128	Transplantation of De Novo Scaffold-Free Cartilage Implants into Sheep Knee Chondral Defects. American Journal of Sports Medicine, 2008, 36, 1555-1564.	4.2	36
129	Establishing a 3D ex vivo culture system for investigations of bone metabolism and biomaterial interactions. ALTEX: Alternatives To Animal Experimentation, 2007, 24 Spec No, 56-9.	1.5	9
130	Generation of a scaffold free cartilage-like implant from a small amount of starting material. Journal of Cellular and Molecular Medicine, 2006, 10, 480-492.	3.6	22
131	Enhanced matrix synthesis in de novo, scaffold free cartilage-like tissue subjected to compression and shear. Biotechnology and Bioengineering, 2006, 95, 1043-1051.	3.3	63
132	In Vitro Gene Transfer to Chondrocytes and Synovial Fibroblasts by Adenoviral Vectors. , 2004, 100, 147-164.		19
133	Multicentre study reveals poor correlation betweenin vitroandin vivoassessments of biomaterials for bone-regeneration. Bone Abstracts. 0	0.0	0