
MatÃ-as Maggi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6958523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Honeybee health in South America. Apidologie, 2016, 47, 835-854.	0.9	96
2	Efficacy of natural propolis extract in the control of American Foulbrood. Veterinary Microbiology, 2008, 131, 324-331.	0.8	72
3	Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Veterinary Microbiology, 2013, 167, 474-483.	0.8	59
4	Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Science of the Total Environment, 2020, 713, 136554.	3.9	45
5	A new formulation of oxalic acid for Varroa destructor control applied in Apis mellifera colonies in the presence of brood. Apidologie, 2016, 47, 596-605.	0.9	32
6	Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. Insects, 2019, 10, 401.	1.0	31
7	Antimicrobial and miticide activities of Eucalyptus globulus essential oils obtained from different Argentine regions. Spanish Journal of Agricultural Research, 2010, 8, 642.	0.3	29
8	Bioactivity of <i>Rosmarinus officinalis</i> essential oils against <i>Apis mellifera</i> , <i>Varroa destructor</i> and <i>Paenibacillus larvae</i> related to the drying treatment of the plant material. Natural Product Research, 2011, 25, 397-406.	1.0	26
9	Abscisic acid enhances cold tolerance in honeybee larvae. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162140.	1.2	26
10	Brood cell size of ApisÂmellifera modifies the reproductive behavior of VarroaÂdestructor. Experimental and Applied Acarology, 2010, 50, 269-279.	0.7	24
11	Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie, 2013, 44, 575-585.	0.9	23
12	Apis mellifera hemocytes generate increased amounts of nitric oxide in response to wounding/encapsulation. Apidologie, 2014, 45, 610-617.	0.9	21
13	Cellular immunity in Apis mellifera: studying hemocytes brings light about bees skills to confront threats. Apidologie, 2016, 47, 379-388.	0.9	21
14	Assessing in Vitro Acaricidal Effect and Joint Action of a Binary Mixture Between Essential Oil Compounds (Thymol, Phellandrene, Eucalyptol, Cinnamaldehyde, Myrcene, Carvacrol) Over Ectoparasitic Mite Varroa Destructor (Acari: Varroidae). Journal of Apicultural Science, 2017, 61, 203-215.	0.1	21
15	Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina. Experimental and Applied Acarology, 2012, 56, 309-318.	0.7	19
16	Laboratory Evaluation ofHeterothalamus alienusEssential Oil Against Different Pests ofApis mellifera. Journal of Essential Oil Research, 2006, 18, 704-707.	1.3	17
17	<i>Apis mellifera</i> haemocytes <i>in-vitro</i> , What type of cells are they? Functional analysis before and after pupal metamorphosis. Journal of Apicultural Research, 2014, 53, 576-589.	0.7	15
18	Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma. Insects, 2017, 8, 85.	1.0	14

MATÃAS MAGGI

#	Article	IF	CITATIONS
19	Effect of Abscisic Acid (ABA) Combined with Two Different Beekeeping Nutritional Strategies to Confront Overwintering: Studies on Honey Bees' Population Dynamics and Nosemosis. Insects, 2019, 10, 329.	1.0	13
20	Pesticide residues used for pest control in honeybee colonies located in agroindustrial areas of Argentina. International Journal of Pest Management, 2020, 66, 163-172.	0.9	13
21	Study of the acarofauna of native bumblebee species (Bombus) from Argentina. Apidologie, 2011, 42, 280-292.	0.9	11
22	Deformed wing virus type a and b in managed honeybee colonies of Argentina. Bulletin of Entomological Research, 2021, 111, 100-110.	0.5	11
23	<i>In vitro</i> antibacterial and antiparasitic effect of citrus fruit essential oils on the honey bee pathogen <i>Paenibacillus larvae</i> and the parasitic mite <i>Varroa destructor</i> . Journal of Apicultural Research, 2009, 48, 77-78.	0.7	10
24	Lotmaria passim (Kinetoplastea: Trypanosomatidae) in honey bees from Argentina. Parasitology International, 2021, 81, 102244.	0.6	10
25	Valorization of hop leaves for development of eco-friendly bee pesticides. Apidologie, 2021, 52, 186-198.	0.9	9
26	Pathogens Detection in the Small Hive Beetle (Aethina tumida (Coleoptera: Nitidulidae)). Neotropical Entomology, 2021, 50, 312-316.	0.5	9
27	Body size variability of Varroa destructor and its role in acaricide tolerance. Parasitology Research, 2012, 110, 2333-2340.	0.6	8
28	Spatial aggregation of phoretic mites on Bombus atratus and Bombus opifex (Hymenoptera: Apidae) in Argentina. Apidologie, 2014, 45, 579-589.	0.9	8
29	Morphometric correlation between Apis mellifera morphotypes (Hymenoptera) and Varroa destructor (Acari) from Uruguay. Journal of Apicultural Research, 2017, 56, 122-129.	0.7	6
30	ls Acarapis woodi mite currently infesting Apis mellifera colonies in Argentina?. Journal of Apicultural Research, 2017, 56, 387-393.	0.7	6
31	Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L Journal of Apicultural Science, 2017, 61, 93-104.	0.1	6
32	Biotic Stressors Affecting Key Apiaries in Argentina. Bee World, 2020, 97, 45-52.	0.3	6
33	First molecular detection of Apis mellifera filamentous virus (AmFV) in honey bees (Apis mellifera) in Argentina. Journal of Apicultural Research, 2021, 60, 111-114.	0.7	6
34	Chronic bee paralysis virus (CBPV) in South American non-Apis bees. Archives of Virology, 2020, 165, 2053-2056.	0.9	5
35	Broad Geographic and Host Distribution of <i>Apis mellifera</i> Filamentous Virus in South American Native Bees. Journal of Apicultural Science, 2019, 63, 327-332.	0.1	5
36	LC50 baseline levels of amitraz, coumaphos, fluvalinate and flumethrin in populations of Varroa destructor from Buenos Aires Province, Argentina Journal of Apicultural Research, 2008, , 292-295.	0.7	3

MATÃAS MAGGI

#	Article	IF	CITATIONS
37	Lethal concentrations of Cymbopogon nardus essential oils and their main component citronellal on Varroa destructor and Apis mellifera. Experimental Parasitology, 2022, 238, 108279.	0.5	3
38	Control of Varroa destructor development in Africanized Apis mellifera honeybees using Aluen Cap (oxalic acid formulation). International Journal of Acarology, 2020, 46, 405-408.	0.3	2
39	Viruses that affect Argentinian honey bees (Apis mellifera). Archives of Virology, 2021, 166, 1533-1545.	0.9	2
40	Short communication: Antimicrobial activity of indoleacetic, gibberellic and coumaric acids against Paenibacillus larvae and its toxicity against Apis mellifera. Spanish Journal of Agricultural Research, 2020, 18, e05SC01.	0.3	1
41	Comparison of qPCR and Morphological Methods For Detection of Acarapis Woodi in Honey Bee Samples. Journal of Apicultural Science, 2019, 63, 125-129.	0.1	1
42	A Lake Sinai Virus Variant is Infecting Managed Honey Bee Colonies of Argentina with Varying Degrees of <i>Varroa destructor</i> Infestation. Bee World, 2021, 98, 126-131.	0.3	0
43	No effect of abscisic and p-coumaric acids as food supplements and stimulants of the immunological system of Africanized hybrids of <i>Apis mellifera</i> . Journal of Apicultural Research, 0, , 1-13.	0.7	0