Jean-marc Giraudon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6958010/publications.pdf

Version: 2024-02-01

236925 223800 2,168 51 25 46 citations h-index g-index papers 51 51 51 2537 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. Journal of Hazardous Materials, 2020, 383, 121139.	12.4	285
2	Formaldehyde: Catalytic Oxidation as a Promising Soft Way of Elimination. ChemSusChem, 2013, 6, 578-592.	6.8	214
3	Total Oxidation of Formaldehyde over MnO _{<i>x</i>>/sub>-CeO₂ Catalysts: The Effect of Acid Treatment. ACS Catalysis, 2015, 5, 2260-2269.}	11.2	199
4	Capture of formaldehyde by adsorption on nanoporous materials. Journal of Hazardous Materials, 2015, 300, 711-717.	12.4	129
5	Nobleâ€Metalâ€Based Catalysts Supported on Zeolites and Macroâ€Mesoporous Metal Oxide Supports for the Total Oxidation of Volatile Organic Compounds. ChemSusChem, 2011, 4, 1420-1430.	6.8	99
6	The Use of Zeolites for VOCs Abatement by Combining Non-Thermal Plasma, Adsorption, and/or Catalysis: A Review. Catalysts, 2019, 9, 98.	3.5	99
7	Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr–Ce–Mn catalysts. Journal of Hazardous Materials, 2011, 188, 422-427.	12.4	97
8	Formaldehyde total oxidation over mesoporous MnOx catalysts. Catalysis Today, 2011, 176, 277-280.	4.4	77
9	A Systematic Study of the Interactions between Chemical Partners (Metal, Ligands, Counterions, and) Tj ETQq 11 Journal of Physical Chemistry B, 2005, 109, 2836-2845.	0.784314 2.6	rgBT /Overlo
10	Mesoporous Silicaâ€Confined Manganese Oxide Nanoparticles as Highly Efficient Catalysts for the Lowâ€Temperature Elimination of Formaldehyde. ChemCatChem, 2014, 6, 152-161.	3.7	55
11	Removal of Toluene over NaX Zeolite Exchanged with Cu2+. Catalysts, 2015, 5, 1479-1497.	3.5	52
12	Synergistic Coupling of the Redox Properties of Supports and Cobalt Oxide Co3O4 for the Complete Oxidation of Volatile Organic Compounds. Catalysis Letters, 2010, 137, 141-149.	2.6	50
13	Catalytic activity of Co–Mg mixed oxides in the VOC oxidation: Effects of ultrasonic assisted in the synthesis. Catalysis Today, 2011, 176, 286-291.	4.4	49
14	Hierarchical porous $\hat{l}\mu$ -MnO2 from perovskite precursor: Application to the formaldehyde total oxidation. Chemical Engineering Journal, 2020, 388, 124146.	12.7	42
15	Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catalysis Today, 2018, 307, 20-28.	4.4	41
16	The Design of MnOx Based Catalyst in Post-Plasma Catalysis Configuration for Toluene Abatement. Catalysts, 2018, 8, 91.	3.5	40
17	Sugarcane bagasse fly ash as an attractive agro-industry source for VOC removal on porous carbon. Industrial Crops and Products, 2013, 49, 108-116.	5.2	34
18	Effect of praseodymium and europium doping in La1â^'Ln MnO3+ (Ln: Pr or Eu, 0 ≤≤1) perosvkite catalysts for total methane oxidation. Applied Catalysis A: General, 2014, 469, 98-107.	4.3	33

#	Article	IF	CITATIONS
19	Toluene total oxidation over Pd and Au nanoparticles supported on hydroxyapatite. Comptes Rendus Chimie, 2016, 19, 525-537.	0.5	33
20	Additional effects of Pt and Nb on hierarchically porous titania in the catalytic removal of n-butanol. Catalysis Today, 2012, 192, 154-159.	4.4	32
21	An in-Depth Investigation of Toluene Decomposition with a Glass Beads-Packed Bed Dielectric Barrier Discharge Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 10215-10226.	3.7	32
22	Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air. Journal of Hazardous Materials, 2019, 379, 120781.	12.4	32
23	Combustion synthesis of LaMn1â^'xAlxO3+δ (0 ≤ ≤): tuning catalytic properties for methane deep oxidation. Catalysis Science and Technology, 2013, 3, 1002.	4.1	31
24	Pd- and/or Au-Loaded Nb- and V-Doped Macro-Mesoporous TiO2 Supports as Catalysts for the Total Oxidation of VOCs. European Journal of Inorganic Chemistry, 2012, 2012, 2812-2818.	2.0	29
25	Au/Co promoted CeO ₂ catalysts for formaldehyde total oxidation at ambient temperature: role of oxygen vacancies. Catalysis Science and Technology, 2019, 9, 3203-3213.	4.1	29
26	Highly Active Nobleâ€Metalâ€Free Copper Hydroxyapatite Catalysts for the Total Oxidation of Toluene. ChemCatChem, 2017, 9, 2275-2283.	3.7	26
27	Hierarchically nanostructured porous group V b metal oxides from alkoxide precursors and their role in the catalytic remediation of VOCs. Applied Catalysis B: Environmental, 2015, 162, 300-309.	20.2	24
28	From Al2O3-supported Ni(II)–ethylenediamine complexes to CO hydrogenation catalysts: Characterization of the surface sites and catalytic properties. Applied Catalysis A: General, 2009, 362, 34-39.	4.3	23
29	A Simple and Green Procedure to Prepare Efficient Manganese Oxide Nanopowder for the Low Temperature Removal of Formaldehyde. ChemCatChem, 2017, 9, 2366-2376.	3.7	22
30	Reactive Grinding Synthesis of LaBO3 (B: Mn, Fe) Perovskite; Properties for Toluene Total Oxidation. Catalysts, 2019, 9, 633.	3 . 5	20
31	Qualitative By-Product Identification of Plasma-Assisted TCE Abatement by Mass Spectrometry and Fourier-Transform Infrared Spectroscopy. Plasma Chemistry and Plasma Processing, 2011, 31, 707-718.	2.4	17
32	VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles. Catalysis Today, 2022, 405-406, 212-220.	4.4	17
33	From Al2O3-supported Ni(II)-ethylenediamine Complexes to CO Hydrogenation Catalysts: Importance of the Hydrogen Post-treatment Evidenced by XPS. Catalysis Letters, 2008, 124, 18-23.	2.6	16
34	Mesoporous MnO2 hollow spheres for enhanced catalytic oxidation of formaldehyde. Sustainable Materials and Technologies, 2019, 20, e00091.	3.3	14
35	Optimization of the combustion synthesis towards efficient LaMnO3+y catalysts in methane oxidation. Applied Catalysis B: Environmental, 2011, , .	20.2	13
36	Reactive Grinding synthesis of La(Sr,Ce)CoO ₃ and their properties in toluene catalytic total oxidation. ChemCatChem, 2020, 12, 2271-2282.	3.7	12

#	Article	IF	CITATIONS
37	Ready, reversible conversion of a quadruply metal–metal bonded dinuclear complex into a mononuclear complex. Journal of the Chemical Society Chemical Communications, 1988, , 921-923.	2.0	11
38	Oscillatory Behavior of Pd-Au Catalysts in Toluene Total Oxidation. Catalysts, 2018, 8, 574.	3.5	9
39	Cuâ^Mn Hydroxyapatite Materials for Toluene Total Oxidation. ChemCatChem, 2020, 12, 550-560.	3.7	9
40	Formaldehyde Total Oxidation on Manganese-Doped Hydroxyapatite: The Effect of Mn Content. Catalysts, 2020, 10, 1422.	3.5	9
41	Mesoporous manganese oxide catalysts for formaldehyde removal: influence of the cerium incorporation. Studies in Surface Science and Catalysis, 2010, , 517-520.	1.5	8
42	Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials. Catalysts, 2020, 10, 761.	3.5	7
43	Preparation and characterization of nanocrystallines Mn-Ce-Zr mixed oxide catalysts by sol-gel method: application to the complete oxidation of n-butanol. Studies in Surface Science and Catalysis, 2010, 175, 731-734.	1.5	6
44	MnO _x ″oaded Mesoporous Silica for the Catalytic Oxidation of Formaldehyde. Effect of the Melt Infiltration Conditions on the Activity – Stability Behavior. ChemCatChem, 2020, 12, 1664-1675.	3.7	6
45	Effect of non-thermal plasma in the activation and regeneration of 13X zeolite for enhanced VOC elimination by cycled storage and discharge process. Journal of Cleaner Production, 2022, 364, 132687.	9.3	6
46	Influence of Shaping on Pd and Pt/TiO ₂ Catalysts in Total Oxidation of VOCs. Advanced Materials Research, 0, 324, 162-165.	0.3	5
47	Adsorption Followed by Plasma Assisted Catalytic Conversion of Toluene into CO2 on Hopcalite in an Air Stream. Catalysts, 2021, 11, 845.	3.5	4
48	Acid Washing of MnOxâ€5BAâ€15 Composites as an Efficient Way to Improve Catalytic Properties in HCHO Total Oxidation. ChemNanoMat, 2020, 6, 1237-1244.	2.8	3
49	Effect of ethylenediamine as chelating agent of cobalt species upon the cobalt-support interactions: application to the VOC catalytic removal. Studies in Surface Science and Catalysis, 2010, 175, 389-392.	1.5	1
50	Investigation of the microwave heating techniques for the synthesis of LaMnO3+ \hat{l} . Studies in Surface Science and Catalysis, 2010, 175, 533-536.	1.5	1
51	Post-Plasma Catalysis for Trichloroethylene Abatement with Ce-Doped Birnessite Downstream DC Corona Discharge Reactor. Catalysts, 2021, 11, 946.	3.5	1