
Wallace C H Choy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6957890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 2016, 16, 1415-1420.	4.5	685
2	Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells. Advanced Materials, 2012, 24, 3046-3052.	11.1	654
3	Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures. Advanced Functional Materials, 2004, 14, 856-864.	7.8	581
4	The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 2015, 106, .	1.5	480
5	Pinhole-Free and Surface-Nanostructured NiO _{<i>x</i>} Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano, 2016, 10, 1503-1511.	7.3	477
6	Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Applied Catalysis A: General, 2005, 285, 181-189.	2.2	400
7	Vacuum-Assisted Thermal Annealing of CH ₃ NH ₃ Pbl ₃ for Highly Stable and Efficient Perovskite Solar Cells. ACS Nano, 2015, 9, 639-646.	7.3	318
8	Postâ€treatmentâ€Free Solutionâ€Processed Nonâ€stoichiometric NiO <i>_x</i> Nanoparticles for Efficient Holeâ€Transport Layers of Organic Optoelectronic Devices. Advanced Materials, 2015, 27, 2930-2937.	11.1	300
9	Efficiency Enhancement of Organic Solar Cells by Using Shapeâ€Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles. Advanced Functional Materials, 2013, 23, 2728-2735.	7.8	279
10	Lowâ€Temperature Solutionâ€Processed Hydrogen Molybdenum and Vanadium Bronzes for an Efficient Holeâ€Transport Layer in Organic Electronics. Advanced Materials, 2013, 25, 2051-2055.	11.1	269
11	Recent Advances in Transition Metal Complexes and Lightâ€Management Engineering in Organic Optoelectronic Devices. Advanced Materials, 2014, 26, 5368-5399.	11.1	266
12	Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. Journal of Materials Chemistry, 2011, 21, 16349.	6.7	259
13	A Smooth CH ₃ NH ₃ Pbl ₃ Film via a New Approach for Forming the Pbl ₂ Nanostructure Together with Strategically High CH ₃ NH ₃ I Concentration for High Efficient Planarâ€Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1501354.	10.2	228
14	Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. Journal of Materials Chemistry, 2012, 22, 1206-1211.	6.7	222
15	Highly Efficient Ternaryâ€Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance. Advanced Materials, 2017, 29, 1704271.	11.1	221
16	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	11.1	213
17	Simultaneous Optimization of Chargeâ€Carrier Balance and Luminous Efficacy in Highly Efficient White Polymer Lightâ€Emitting Devices. Advanced Materials, 2011, 23, 2976-2980.	11.1	204
18	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192

#	Article	IF	CITATIONS
19	Poly(3-hexylthiophene):TiO2nanocomposites for solar cell applications. Nanotechnology, 2004, 15, 1156-1161.	1.3	187
20	Effects of Selfâ€Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem, 2017, 10, 3794-3803.	3.6	185
21	Improving the stability and performance of perovskite solar cells <i>via</i> off-the-shelf post-device ligand treatment. Energy and Environmental Science, 2018, 11, 2253-2262.	15.6	181
22	Toward All Roomâ€Temperature, Solutionâ€Processed, Highâ€Performance Planar Perovskite Solar Cells: A New Scheme of Pyridineâ€Promoted Perovskite Formation. Advanced Materials, 2017, 29, 1604695.	11.1	178
23	Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film–Metal Nanoparticle Coupling System. Advanced Functional Materials, 2014, 24, 3114-3122.	7.8	171
24	Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers. Advanced Materials, 2021, 33, e2005570.	11.1	171
25	MoOx and V2Ox as hole and electron transport layers through functionalized intercalation in normal and inverted organic optoelectronic devices. Light: Science and Applications, 2015, 4, e273-e273.	7.7	169
26	Biodegradable Materials and Green Processing for Green Electronics. Advanced Materials, 2020, 32, e2001591.	11.1	168
27	Surface Plasmon and Scatteringâ€Enhanced Lowâ€Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Advanced Energy Materials, 2012, 2, 1203-1207.	10.2	160
28	Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Applied Physics Letters, 2011, 99, .	1.5	157
29	Visible photoluminescence in ZnO tetrapod and multipod structures. Applied Physics Letters, 2004, 84, 2635-2637.	1.5	152
30	Waterâ€Soluble Triazolium Ionicâ€Liquidâ€Induced Surface Selfâ€Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900417.	7.8	145
31	Plasmonic Electrically Functionalized TiO ₂ for Highâ€Performance Organic Solar Cells. Advanced Functional Materials, 2013, 23, 4255-4261.	7.8	138
32	Locally Welded Silver Nanoâ€Network Transparent Electrodes with High Operational Stability by a Simple Alcoholâ€Based Chemical Approach. Advanced Functional Materials, 2015, 25, 4211-4218.	7.8	131
33	Room-Temperature Solution-Processed NiO _{<i>x</i>} :Pbl ₂ Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors. ACS Nano, 2016, 10, 6808-6815.	7.3	122
34	Selective Growth and Integration of Silver Nanoparticles on Silver Nanowires at Room Conditions for Transparent Nano-Network Electrode. ACS Nano, 2014, 8, 10980-10987.	7.3	119
35	Efficient and Stable Red Perovskite Lightâ€Emitting Diodes with Operational Stability >300 h. Advanced Materials, 2021, 33, e2008820.	11.1	119
36	Highâ€Quality Cuboid CH ₃ NH ₃ PbI ₃ Single Crystals for High Performance Xâ€Ray and Photon Detectors. Advanced Functional Materials, 2019, 29, 1806984.	7.8	115

#	Article	IF	CITATIONS
37	Strategic Synthesis of Ultrasmall NiCo ₂ O ₄ NPs as Hole Transport Layer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702722.	10.2	112
38	Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4398-4404.	2.1	105
39	Solutionâ€Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1804660.	7.8	105
40	Novel Direct Nanopatterning Approach to Fabricate Periodically Nanostructured Perovskite for Optoelectronic Applications. Advanced Functional Materials, 2017, 27, 1606525.	7.8	101
41	Au Multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy, 2016, 30, 549-558.	8.2	98
42	Exploring the Way To Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model. ACS Photonics, 2017, 4, 934-942.	3.2	98
43	Lending Triarylphosphine Oxide to Phenanthroline: a Facile Approach to Highâ€Performance Organic Smallâ€Molecule Cathode Interfacial Material for Organic Photovoltaics utilizing Airâ€6table Cathodes. Advanced Functional Materials, 2014, 24, 6540-6547.	7.8	96
44	Enhanced charge extraction in organic solar cells through electron accumulation effects induced by metal nanoparticles. Energy and Environmental Science, 2013, 6, 3372.	15.6	95
45	Efficient Inverted Polymer Solar Cells with Directly Patterned Active Layer and Silver Back Grating. Journal of Physical Chemistry C, 2012, 116, 7200-7206.	1.5	93
46	All-Perovskite Emission Architecture for White Light-Emitting Diodes. ACS Nano, 2018, 12, 10486-10492.	7.3	92
47	Hole Transport Bilayer Structure for Quasiâ€2D Perovskite Based Blue Lightâ€Emitting Diodes with High Brightness and Good Spectral Stability. Advanced Functional Materials, 2019, 29, 1905339.	7.8	92
48	Strategies Toward Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2100516.	7.8	92
49	Al-TiO ₂ Composite-Modified Single-Layer Graphene as an Efficient Transparent Cathode for Organic Solar Cells. ACS Nano, 2013, 7, 1740-1747.	7.3	90
50	High Phase Stability in CsPbI ₃ Enabled by Pb–I Octahedra Anchors for Efficient Inorganic Perovskite Photovoltaics. Advanced Materials, 2020, 32, e2000186.	11.1	90
51	Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells. Journal of Materials Chemistry A, 2013, 1, 6614.	5.2	89
52	Simultaneous Low-Order Phase Suppression and Defect Passivation for Efficient and Stable Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2569-2579.	8.8	89
53	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
54	Organic–Inorganic Perovskite Lightâ€Emitting Electrochemical Cells with a Large Capacitance. Advanced Functional Materials, 2015, 25, 7226-7232.	7.8	87

#	Article	IF	CITATIONS
55	Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective. Advanced Energy Materials, 2022, 12, .	10.2	87
56	Controllable Crystallization of CH ₃ NH ₃ Sn _{0.25} Pb _{0.75} I ₃ Perovskites for Hysteresisâ€Free Solar Cells with Efficiency Reaching 15.2%. Advanced Functional Materials, 2017, 27, 1605469.	7.8	84
57	Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 2016, 8, 5946-5953.	2.8	83
58	Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model. Advanced Energy Materials, 2018, 8, 1701586.	10.2	82
59	Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale. Small, 2016, 12, 1547-1571.	5.2	77
60	High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Small, 2016, 12, 5200-5207.	5.2	73
61	Emerging Novel Metal Electrodes for Photovoltaic Applications. Small, 2018, 14, e1703140.	5.2	73
62	Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells. Applied Physics Letters, 2011, 99, .	1.5	72
63	Thick TiO ₂ -Based Top Electron Transport Layer on Perovskite for Highly Efficient and Stable Solar Cells. ACS Energy Letters, 2018, 3, 2891-2898.	8.8	71
64	Lowâ€Bandgap Methylammoniumâ€Rubidium Cation Snâ€Rich Perovskites for Efficient Ultraviolet–Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2018, 28, 1706068.	7.8	70
65	Multifunctional Synthesis Approach of In:CuCrO ₂ Nanoparticles for Hole Transport Layer in Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1902600.	7.8	70
66	A comprehensive study for the plasmonic thin-film solar cell with periodic structure. Optics Express, 2010, 18, 5993.	1.7	67
67	Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics. Small, 2016, 12, 416-431.	5.2	67
68	Highâ€Performance Organic Solar Cells with Broadband Absorption Enhancement and Reliable Reproducibility Enabled by Collective Plasmonic Effects. Advanced Optical Materials, 2015, 3, 1220-1231.	3.6	66
69	Controllable Synthesis and Optical Properties of Novel ZnO Cone Arrays via Vapor Transport at Low Temperature. Journal of Physical Chemistry B, 2005, 109, 2733-2738.	1.2	65
70	Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 21248-21253.	1.5	64
71	Angular response of thin-film organic solar cells with periodic metal back nanostrips. Optics Letters, 2011, 36, 478.	1.7	62
72	An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS. Nanoscale, 2015, 7, 11291-11299.	2.8	62

#	Article	IF	CITATIONS
73	Breaking the Space Charge Limit in Organic Solar Cells by a Novel Plasmonic-Electrical Concept. Scientific Reports, 2014, 4, 6236.	1.6	62
74	Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO ₃ /MoO ₃ multilayer as the interconnecting layer. Nanoscale, 2016, 8, 3638-3646.	2.8	59
75	High Performance Flexible Transparent Electrode via Oneâ€Step Multifunctional Treatment for Ag Nanonetwork Composites Semiâ€Embedded in Lowâ€Temperatureâ€Processed Substrate for Highly Performed Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 1903919.	10.2	58
76	How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. Journal of Materials Chemistry A, 2019, 7, 23838-23853.	5.2	57
77	Optically enhanced semi-transparent organic solar cells through hybrid metal/nanoparticle/dielectric nanostructure. Nano Energy, 2015, 17, 187-195.	8.2	54
78	Optical and electrical study of organic solar cells with a 2D grating anode. Optics Express, 2012, 20, 2572.	1.7	52
79	Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells. Science China Chemistry, 2017, 60, 472-489.	4.2	52
80	Efficient CsPbBr ₃ Nanoplatelet-Based Blue Light-Emitting Diodes Enabled by Engineered Surface Ligands. ACS Energy Letters, 2022, 7, 1137-1145.	8.8	52
81	Substantial Performance Improvement in Inverted Polymer Light-Emitting Diodes via Surface Plasmon Resonance Induced Electrode Quenching Control. ACS Applied Materials & Interfaces, 2014, 6, 11001-11006.	4.0	51
82	The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Materials Horizons, 2020, 7, 934-942.	6.4	51
83	Tailoring the Interface in FAPbI ₃ Planar Perovskite Solar Cells by Imidazoleâ€Grapheneâ€Quantumâ€Dots. Advanced Functional Materials, 2021, 31, 2101438.	7.8	51
84	Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes. Applied Physics Letters, 2013, 102, 113303.	1.5	49
85	Plasmon-Electrical Effects on Organic Solar Cells by Incorporation of Metal Nanostructures. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 1-9.	1.9	49
86	Synthesis, vacuum ultraviolet and near ultraviolet-excited luminescent properties of GdCaAl3O7: RE3+ (RE=Eu, Tb). Journal of Solid State Chemistry, 2005, 178, 3004-3009.	1.4	48
87	Synthesis of wurtzite ZnSe nanorings by thermal evaporation. Applied Physics Letters, 2006, 88, 183110.	1.5	48
88	Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode. Applied Physics Letters, 2013, 102, 153304.	1.5	48
89	Room temperature formation of organic–inorganic lead halide perovskites: design of nanostructured and highly reactive intermediates. Journal of Materials Chemistry A, 2017, 5, 3599-3608.	5.2	48
90	Efficiency and stability of different tris(8-hydroxyquinoline) aluminium (Alq3) derivatives in OLED applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 116, 75-81.	1.7	46

#	Article	IF	CITATIONS
91	Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 3114-3131.	8.8	46
92	The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells. Chemical Communications, 2014, 50, 11984-11993.	2.2	45
93	Organic light-emitting diodes based on a cohost electron transporting composite. Applied Physics Letters, 2006, 88, 113510.	1.5	44
94	Over 1.1 eV Workfunction Tuning of Cesium Intercalated Metal Oxides for Functioning as Both Electron and Hole Transport Layers in Organic Optoelectronic Devices. Advanced Functional Materials, 2014, 24, 7348-7356.	7.8	44
95	A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and Its Realization by the Plasmonic-Electrical Effect. Scientific Reports, 2015, 5, 8525.	1.6	44
96	Solutionâ€Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics. Advanced Energy Materials, 2020, 10, 1900903.	10.2	44
97	Triple Interface Passivation Strategyâ€Enabled Efficient and Stable Inverted Perovskite Solar Cells. Small Methods, 2020, 4, 2000478.	4.6	44
98	Polymer solar cells with gold nanoclusters decorated multi-layer graphene as transparent electrode. Applied Physics Letters, 2011, 99, 223302.	1.5	43
99	Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green's function. Optics Express, 2012, 20, 20210.	1.7	43
100	Efficient near-infrared light-emitting diodes based on organometallic halide perovskite–poly(2-ethyl-2-oxazoline) nanocomposite thin films. Nanoscale, 2016, 8, 19846-19852.	2.8	43
101	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskites. Solar Rrl, 2018, 2, 1800146.	3.1	43
102	Efficient and Stable Allâ€inorganic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000408.	3.1	43
103	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	4.6	43
104	Pre- and post-treatments free nanocomposite based hole transport layer for high performance organic solar cells with considerably enhanced reproducibility. Nano Energy, 2017, 34, 76-85.	8.2	42
105	Tuning optical responses of metallic dipole nanoantenna using graphene. Optics Express, 2013, 21, 31824.	1.7	40
106	A solution-processable diketopyrrolopyrrole dye molecule with (fluoronaphthyl)thienyl endgroups for organic solar cells. Dyes and Pigments, 2014, 101, 51-57.	2.0	40
107	Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells. Journal of Materials Chemistry A, 2015, 3, 23955-23963.	5.2	40
108	Thermionic Emission–Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solutionâ€Processed Perovskites. Advanced Energy Materials, 2018, 8, 1801954.	10.2	40

#	Article	IF	CITATIONS
109	Achieving High-Quality Sn–Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array. ACS Nano, 2019, 13, 11800-11808.	7.3	40
110	Selfâ€Assembled Quasiâ€3D Nanocomposite: A Novel pâ€Type Hole Transport Layer for High Performance Inverted Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1706403.	7.8	39
111	A General Method: Designing a Hypocrystalline Hydroxide Intermediate to Achieve Ultrasmall and Wellâ€Dispersed Ternary Metal Oxide for Efficient Photovoltaic Devices. Advanced Functional Materials, 2019, 29, 1904684.	7.8	39
112	Color tunable organic light-emitting diodes by using europium organometallic complex. Applied Physics Letters, 2006, 89, 251108.	1.5	38
113	High Efficiency Blue Organic LEDs Achieved By an Integrated Fluorescence–Interlayer–Phosphorescence Emission Architecture. Advanced Functional Materials, 2010, 20, 648-655.	7.8	38
114	Improving the viewing angle properties of microcavity OLEDs by using dispersive gratings. Optics Express, 2007, 15, 13288.	1.7	37
115	Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures. IEEE Nanotechnology Magazine, 2012, 11, 336-345.	1.1	37
116	Photovoltaic Mode Ultraviolet Organic Photodetectors with High On/Off Ratio and Fast Response. Advanced Optical Materials, 2014, 2, 1082-1089.	3.6	37
117	A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1500631.	10.2	37
118	Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. Journal of Materials Chemistry A, 2018, 6, 23865-23874.	5.2	37
119	Efficient and Rigorous Modeling of Light Emission in Planar Multilayer Organic Light-Emitting Diodes. Journal of Display Technology, 2007, 3, 110-117.	1.3	36
120	Linearly resistive humidity sensor based on quasi one-dimensional ZnSe nanostructures. Chemical Physics Letters, 2008, 457, 198-201.	1.2	36
121	Unidirectional and wavelength-selective photonic sphere-array nanoantennas. Optics Letters, 2012, 37, 2112.	1.7	36
122	Transient Photovoltage Measurements on Perovskite Solar Cells with Varied Defect Concentrations and Inhomogeneous Recombination Rates. Small Methods, 2020, 4, 2000290.	4.6	36
123	A novel green emitting phosphor Ca1.5Y1.5Al3.5Si1.5O12:Tb3+. Materials Chemistry and Physics, 2006, 100, 372-374.	2.0	35
124	Efficient hole collection by introducing ultra-thin UV–ozone treated Au in polymer solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 904-908.	3.0	35
125	A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430.	5.2	34
126	Device Physics of the Carrier Transporting Layer in Planar Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900407.	3.6	34

#	Article	IF	CITATIONS
127	High-Performance Blue Quasi-2D Perovskite Light-Emitting Diodes via Balanced Carrier Confinement and Transfer. Nano-Micro Letters, 2022, 14, 66.	14.4	34
128	Sequential Processing: Spontaneous Improvements in Film Quality and Interfacial Engineering for Efficient Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800027.	3.1	33
129	Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Communications Materials, 2020, 1, .	2.9	33
130	Synthesis and analysis of abnormal wurtzite ZnSe nanowheels. Journal of Applied Physics, 2007, 102, 044302.	1.1	31
131	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasi ore–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	10.2	31
132	Light harvesting improvement of organic solar cells with self-enhanced active layer designs. Optics Express, 2012, 20, 8175.	1.7	30
133	Polarizationâ€Induced Charge Distribution at Homogeneous Zincblende/Wurtzite Heterostructural Junctions in ZnSe Nanobelts. Advanced Materials, 2012, 24, 1328-1332.	11.1	30
134	An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 371-379.	5.2	30
135	A Simple method to prepare multi-walled carbon nanotube/ZnO nanoparticle composites. Applied Physics A: Materials Science and Processing, 2007, 89, 525-528.	1.1	29
136	A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell. Advanced Energy Materials, 2017, 7, 1701164.	10.2	29
137	Triple-Crystal Zinc Selenide Nanobelts. Journal of Physical Chemistry C, 2007, 111, 9055-9059.	1.5	28
138	Tunable full-color emission of two-unit stacked organic light emitting diodes with dual-metal intermediate electrode. Journal of Organometallic Chemistry, 2009, 694, 2712-2716.	0.8	27
139	Systematic study of spontaneous emission in a two-dimensional arbitrary inhomogeneous environment. Physical Review A, 2011, 83, .	1.0	27
140	Polarization Control by Using Anisotropic 3-D Chiral Structures. IEEE Transactions on Antennas and Propagation, 2016, 64, 4687-4694.	3.1	27
141	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
142	Comprehensive analysis and optimal design of top-emitting organic light-emitting devices. Journal of Applied Physics, 2007, 101, 113107.	1.1	26
143	Electron-pinned defect dipoles in (Li, Al) co-doped ZnO ceramics with colossal dielectric permittivity. Journal of Materials Chemistry A, 2020, 8, 4764-4774.	5.2	26
144	Inorganic top electron transport layer for high performance inverted perovskite solar cells. EcoMat, 2021, 3, e12127.	6.8	26

#	Article	IF	CITATIONS
145	Energy Regulation in White-Light-Emitting Diodes. ACS Energy Letters, 2022, 7, 2173-2188.	8.8	26
146	Laser-induced etching of silicon. Applied Physics A: Materials Science and Processing, 1995, 61, 45-50.	1.1	25
147	Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity. Applied Physics Letters, 2007, 91, 221112.	1.5	24
148	Synthesis and luminescent properties of GdSrAl3O7:Tb3+ phosphor under VUV/UV excitation. Journal of Alloys and Compounds, 2008, 463, 302-305.	2.8	24
149	Nanoparticle-induced resonant tunneling behaviors in small molecule organic light-emitting devices. Applied Physics Letters, 2009, 94, .	1.5	24
150	Magnetic field effects on the electroluminescence of organic light emitting devices: A tool to indicate the carrier mobility. Applied Physics Letters, 2010, 97, 163302.	1.5	24
151	Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale, 2019, 11, 16907-16918.	2.8	24
152	Critical Role of Functional Groups in Defect Passivation and Energy Band Modulation in Efficient and Stable Inverted Perovskite Solar Cells Exceeding 21% Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 57165-57173.	4.0	24
153	Comprehensive investigation of absolute optical properties of organic materials. Journal Physics D: Applied Physics, 2008, 41, 155109.	1.3	23
154	The incorporation of thermionic emission and work function tuning layer into intermediate connecting layer for high performance tandem organic solar cells. Nano Energy, 2016, 21, 123-132.	8.2	23
155	All-room-temperature solution-processed new nanocomposites based hole transport layer from synthesis to film formation for high-performance organic solar cells towards ultimate energy-efficient fabrication. Nano Energy, 2018, 47, 26-34.	8.2	23
156	Enhanced Silver Nanowire Composite Window Electrode Protected by Large Size Graphene Oxide Sheets for Perovskite Solar Cells. Nanomaterials, 2019, 9, 193.	1.9	23
157	Indium Tin Oxide Modified by Au and Vanadium Pentoxide as an Efficient Anode for Organic Light-Emitting Devices. IEEE Transactions on Electron Devices, 2008, 55, 2517-2520.	1.6	22
158	Improving efficiency roll-off in organic light emitting devices with a fluorescence-interlayer-phosphorescence emission architecture. Applied Physics Letters, 2009, 95, 133304.	1.5	22
159	Hybrid Nanoparticle/Organic Devices with Strong Resonant Tunneling Behaviors. Advanced Functional Materials, 2009, 19, 2648-2653.	7.8	22
160	Optical design of organic solar cell with hybrid plasmonic system. Optics Express, 2011, 19, 15908.	1.7	22
161	A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings. Solar Energy Materials and Solar Cells, 2012, 99, 327-332.	3.0	22
162	Synergic Effects of Randomly Aligned SWCNT Mesh and Selfâ€Assembled Molecule Layer for Highâ€Performance, Lowâ€Bandgap, Polymer Solar Cells with Fast Charge Extraction. Advanced Materials Interfaces, 2015, 2, 1500324.	1.9	22

#	Article	IF	CITATIONS
163	The applications of an interdiffused quantum well in a normally on electroabsorptive Fabry-Perot reflection modulator. IEEE Journal of Quantum Electronics, 1997, 33, 382-392.	1.0	21
164	Characterization, modeling, and analysis of organic light-emitting diodes with different structures. IEEE Transactions on Power Electronics, 2016, 31, 581-592.	5.4	21
165	Recent progress of interconnecting layer for tandem organic solar cells. Science China Chemistry, 2017, 60, 460-471.	4.2	21
166	Magnetic field modulated exciton generation in organic semiconductors: An intermolecular quantum correlated effect. Physical Review B, 2010, 82, .	1.1	20
167	Establishing Multifunctional Interface Layer of Perovskite Ligand Modified Lead Sulfide Quantum Dots for Improving the Performance and Stability of Perovskite Solar Cells. Small, 2020, 16, e2002628.	5.2	20
168	Multifunctional Ion‣ock Interface Layer Achieved by Solid–Solid Contact Approach for Stabilizing Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	20
169	1â€Chloronaphthaleneâ€Induced Donor/Acceptor Vertical Distribution and Carrier Dynamics Changes in Nonfullerene Organic Solar Cells and the Governed Mechanism. Small Methods, 2022, 6, e2101475.	4.6	19
170	{113} Twinned ZnSe Bicrystal Nanobelts Filled with <111> Twinnings. Journal of Physical Chemistry C, 2008, 112, 4903-4907.	1.5	18
171	A facile synthesis of zinc blende ZnSe nanocrystals. Journal Physics D: Applied Physics, 2009, 42, 125410.	1.3	18
172	Functions of Self-Assembled Ultrafine TiO ₂ Nanocrystals for High Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5367-5373.	4.0	18
173	Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar cells. Journal of Applied Physics, 2016, 120, .	1.1	18
174	Antioxidation and Energy-Level Alignment for Improving Efficiency and Stability of Hole Transport Layer-Free and Methylammonium-Free Tin–Lead Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45059-45067.	4.0	18
175	Transparent Al/WO3/Au film as anode for high efficiency organic light-emitting diodes. Organic Electronics, 2008, 9, 964-967.	1.4	17
176	High-efficiency blue fluorescent organic light emitting devices based on double emission layers. Journal Physics D: Applied Physics, 2008, 41, 055103.	1.3	17
177	Broadband enhancement of spontaneous emission in a photonic-plasmonic structure. Optics Letters, 2012, 37, 2037.	1.7	17
178	Smooth CH ₃ NH ₃ PbI ₃ from controlled solid–gas reaction for photovoltaic applications. RSC Advances, 2015, 5, 73760-73766.	1.7	17
179	Strongly enhanced and directionally tunable second-harmonic radiation from a plasmonic particle-in-cavity nanoantenna. Physical Review A, 2016, 94, .	1.0	17
180	Efficient Semiâ€Transparent Organic Solar Cells with High Color Rendering Index Enabled by Selfâ€Assembled and Knitted AgNPs/MWCNTs Transparent Top Electrode via Solution Process. Advanced Optical Materials, 2021, 9, 2002108.	3.6	16

#	Article	IF	CITATIONS
181	Doubleâ€Side Crystallization Tuning to Achieve over 1µm Thick and Wellâ€Aligned Blockâ€Like Narrowâ€Bandgap Perovskites for Highâ€Efficiency Nearâ€Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2010532.	7.8	16
182	Near-infrared non-fused ring acceptors with light absorption up to 1000Ânm for efficient and low-energy loss organic solar cells. Materials Today Energy, 2022, 24, 100938.	2.5	16
183	Electron Delocalization in CsPbI ₃ Quantum Dots Enables Efficient Lightâ€Emitting Diodes with Improved Efficiency Rollâ€Off. Advanced Optical Materials, 2022, 10, .	3.6	16
184	Improving the efficiency of organic light emitting devices by using co-host electron transport layer. Thin Solid Films, 2006, 509, 193-196.	0.8	15
185	The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells. Applied Physics Letters, 2012, 101, .	1.5	15
186	Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell. Optics Express, 2007, 15, 7083.	1.7	14
187	Large-area, high-quality self-assembly electron transport layer for organic optoelectronic devices. Organic Electronics, 2012, 13, 2042-2046.	1.4	14
188	A comprehensively theoretical and experimental study of carrier generation and transport for achieving high performance ternary blend organic solar cells. Nano Energy, 2018, 51, 206-215.	8.2	14
189	High-Quality MAPbBr ₃ Cuboid Film with Promising Optoelectronic Properties Prepared by a Hot Methylamine Precursor Approach. ACS Applied Materials & amp; Interfaces, 2020, 12, 24498-24504.	4.0	14
190	Selfâ€Polymerization of Monomer and Induced Interactions with Perovskite for Highly Performed and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2105290.	7.8	14
191	Recent Progress on Emerging Transparent Metallic Electrodes for Flexible Organic and Perovskite Photovoltaics. Solar Rrl, 2022, 6, .	3.1	14
192	Electro-absorptive properties of interdiffused InGaAsP/InP quantum wells. Journal of Applied Physics, 1997, 82, 3861-3869.	1.1	13
193	Polarization-insensitive electroabsorptive modulation using interdiffused InGaAs(P)-InP quantum wells. IEEE Journal of Quantum Electronics, 1997, 33, 1316-1322.	1.0	13
194	Synthesis and properties of ZnO multipod structures. Journal of Crystal Growth, 2005, 274, 430-437.	0.7	13
195	Growth of ZnSe Nanospirals with Bending Mediated by Lomerâ^'Cottrell Sessile Dislocations through Varying Pressure. Crystal Growth and Design, 2008, 8, 3829-3833.	1.4	13
196	Highly efficient organic light-emitting devices with surface-modified metal anode by vanadium pentoxide. Journal Physics D: Applied Physics, 2008, 41, 062003.	1.3	13
197	Using Magneto-Electroluminescence As a Fingerprint to Identify the Carrier-to-Photon Conversion Process in Dye-Doped OLEDs. Journal of Physical Chemistry C, 2011, 115, 20295-20300.	1.5	13
198	A possible mechanism to tune magneto-electroluminescence in organic light-emitting diodes through adjusting the triplet exciton density. Applied Physics Letters, 2011, 99, .	1.5	13

#	Article	IF	CITATIONS
199	Broadband absorption enhancement of organic solar cells with interstitial lattice patterned metal nanoparticles. Applied Physics Letters, 2013, 102, .	1.5	13
200	Efficient Gradient Potential Top Electron Transport Structures Achieved by Combining an Oxide Family for Inverted Perovskite Solar Cells with High Efficiency and Stability. ACS Applied Materials & Interfaces, 2021, 13, 27179-27187.	4.0	13
201	Enhancing hole injection by electric dipoles for efficient blue InP QLEDs. Applied Physics Letters, 2021, 119, .	1.5	13
202	Electrooptic and electroabsorptive modulation properties in interdiffusion-modified AlGaAs-GaAs quantum wells. IEEE Photonics Technology Letters, 1995, 7, 881-883.	1.3	12
203	Fabrication and characterization of amorphous silica nanostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 4622-4626.	0.9	12
204	ZnSe Heterocrystalline Junctions Based on Zinc Blendeâ^'Wurtzite Polytypism. Journal of Physical Chemistry C, 2010, 114, 1411-1415.	1.5	12
205	Improving polymer solar cell performances by manipulating the self-organization of polymer. Applied Physics Letters, 2011, 98, .	1.5	12
206	Photochemically synthesized silver nanostructures on tapered fiber as plasmonic tweezers for surface enhanced Raman scattering applications. Vacuum, 2015, 118, 171-176.	1.6	12
207	Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells. Science China Chemistry, 2015, 58, 347-356.	4.2	12
208	Recent Developments in Organic Tandem Solar Cells toward High Efficiency. Advanced Energy and Sustainability Research, 2021, 2, 2000050.	2.8	12
209	Highâ€Performance Semitransparent Organic Solar Cells Enabled by Improved Charge Transport and Optical Engineering of Ternary Blend Active Layer. Solar Rrl, 2022, 6, 2100785.	3.1	12
210	Polarization-insensitive electroabsorption by use of quantum well interdiffusion. Applied Optics, 1998, 37, 1674.	2.1	11
211	Red organic light emitting devices with reduced efficiency roll-off behavior by using hybrid fluorescent/phosphorescent emission structure. Thin Solid Films, 2010, 519, 872-875.	0.8	11
212	MULTI-PHYSICAL PROPERTIES OF PLASMONIC ORGANIC SOLAR CELLS (Invited Paper). Progress in Electromagnetics Research, 2014, 146, 25-46.	1.6	11
213	Broadband near-field enhancement in the macro-periodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes. Nanoscale, 2015, 7, 16798-16804.	2.8	11
214	Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Applied Physics Letters, 2022, 120, .	1.5	11
215	Tailoring light and heavy holes of GaAsP-AlGaAs quantum wells by using interdiffusion for polarization-independent amplifier applications. IEEE Journal of Quantum Electronics, 2000, 36, 164-174.	1.0	10
216	Observing abnormally large group velocity at the plasmonic band edge via a universal eigenvalue analysis. Optics Letters, 2014, 39, 158.	1.7	10

#	Article	IF	CITATIONS
217	Experimental and Theoretical Investigation of Macro-Periodic and Micro-Random Nanostructures with Simultaneously Spatial Translational Symmetry and Long-Range Order Breaking. Scientific Reports, 2015, 5, 7876.	1.6	10
218	Hybrid 3D Nanostructure-Based Hole Transport Layer for Highly Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 16611-16619.	4.0	10
219	Stability of electroluminescent perovskite quantum dots lightâ€emitting diode. Nano Select, 2022, 3, 505-530.	1.9	10
220	Asymmetric double-quantum-well phase modulator using surface acoustic waves. IEEE Journal of Quantum Electronics, 1998, 34, 1846-1853.	1.0	9
221	Self-catalytic ZnSe nanorods on grains synthesized using thermal evaporation method. Applied Physics A: Materials Science and Processing, 2006, 83, 301-304.	1.1	9
222	Blue Organic LEDs With Improved Power Efficiency. IEEE Transactions on Electron Devices, 2010, 57, 125-128.	1.6	9
223	Twinning mediated growth of ZnSe tri- and bi-crystal nanobelts with single crystalline wurtzite nanobelts as building blocks. CrystEngComm, 2010, 12, 150-158.	1.3	9
224	Electro-optic and electro-absorptive modulations of AlGaAs/GaAs quantum well using surface acoustic wave. Journal of Applied Physics, 1998, 83, 858-866.	1.1	8
225	Optical properties of a novel yellow fluorescent dopant for use in organic LEDs. Applied Physics A: Materials Science and Processing, 2005, 81, 517-521.	1.1	8
226	Effects of carrier barrier on voltage controllable color tunable OLEDs. Applied Physics A: Materials Science and Processing, 2007, 89, 667-671.	1.1	8
227	Voltage-controlled colour-tunable microcavity OLEDs with enhanced colour purity. Journal Physics D: Applied Physics, 2008, 41, 025106.	1.3	8
228	Evaporationâ€Free Organic Solar Cells with High Efficiency Enabled by Dry and Nonimmersive Sintering Strategy. Advanced Functional Materials, 2021, 31, 2010764.	7.8	8
229	The structural composite effect of Au–WO3–Al interconnecting electrode on performance of each unit in stacked OLEDs. Organic Electronics, 2009, 10, 402-407.	1.4	7
230	Polarity continuation and frustration in ZnSe nanospirals. Scientific Reports, 2014, 4, 7447.	1.6	7
231	Realizing the ultimate goal of fully solution-processed organic solar cells: a compatible self-sintering method to achieve silver back electrode. Journal of Materials Chemistry A, 2020, 8, 6083-6091.	5.2	7
232	Full-Color Quantum Dot Light-Emitting Diodes Based on Microcavities. IEEE Photonics Journal, 2022, 14, 1-9.	1.0	7
233	The effect of growth interruption on the properties of InGaAs/InAlAs quantum well structures. Applied Physics Letters, 1998, 72, 338-340.	1.5	6
234	Optical properties of InGaAs/InAIAs diffused double quantum wells. Journal of Applied Physics, 2000, 87, 2956-2966.	1.1	6

#	Article	IF	CITATIONS
235	Theoretical analysis of diffused quantum-well lasers and optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 698-707.	1.9	6
236	ZnO nanorods grown on ZnSe particles by the chemical vapor deposition method. Applied Physics A: Materials Science and Processing, 2006, 83, 421-425.	1.1	6
237	The growth mechanism of ZnO single-crystal nanorods synthesized by polymer complexing with zinc salts. Applied Physics A: Materials Science and Processing, 2008, 91, 157-160.	1.1	5
238	An effective intermediate Al/Au electrode for stacked color-tunable organic light emitting devices. Applied Physics A: Materials Science and Processing, 2008, 91, 501-506.	1.1	5
239	Independently controllable stacked OLEDs with high efficiency by using semitransparent Al/WO3/Ag intermediate connecting layer. Journal Physics D: Applied Physics, 2008, 41, 105108.	1.3	5
240	Highly efficient and tunable fluorescence of a nanofluorophore in silica/metal dual shells with plasmonic resonance. Journal of Applied Physics, 2008, 103, .	1.1	5
241	Largely extended light-emission shift of ZnSe nanostructures with temperature. Applied Optics, 2011, 50, G37.	2.1	5
242	Enhancing stability of CsPbBr 3 nanocrystals lightâ€emitting diodes through polymethylmethacrylate physical adsorption. Nano Select, 2020, 1, 372-381.	1.9	5
243	Optical Tunneling to Improve Light Extraction in Quantum Dot and Perovskite Light-Emitting Diodes. IEEE Photonics Journal, 2020, 12, 1-14.	1.0	5
244	Observing and Understanding the Corrosion of Silver Nanowire Electrode by Precursor Reagents and MAPbI ₃ Film in Different Environmental Conditions. Advanced Materials Interfaces, 2021, 8, 2001669.	1.9	5
245	AlGaAs-GaAs quantum-well electrooptic phase modulator with disorder delineated optical confinement. IEEE Journal of Quantum Electronics, 1998, 34, 84-92.	1.0	4
246	Interdiffused AlGaAs-GaAs quantum well for improved electroabsorptive modulation. IEEE Journal of Quantum Electronics, 1998, 34, 1162-1170.	1.0	4
247	Interdiffusion induced polarization-independent optical gain of an InGaAs-InP quantum-well with carrier effects. IEEE Journal of Quantum Electronics, 1999, 35, 913-921.	1.0	4
248	Improving the efficiency of OLEDs by utilizing metallophthalocyanines. , 2005, , .		4
249	ZnO Nanorods on In-Situ Synthesized ZnSe Grains. Journal of Nanoscience and Nanotechnology, 2006, 6, 802-806.	0.9	4
250	The Electroluminescent Decay Mechanism of Rare-Earth Ions in OLEDs Based on a Terbium Complex. IEEE Photonics Technology Letters, 2007, 19, 1178-1180.	1.3	4
251	A reduced electron-extraction barrier at an interface between a polymer poly(3-hexylthiophene) layer and an indium tin oxide layer. Organic Electronics, 2013, 14, 457-463.	1.4	4
252	Improved light outcoupling and mode analysis of top-emitting OLEDs on periodically corrugated substrates. Proceedings of SPIE, 2013, , .	0.8	4

#	Article	IF	CITATIONS
253	Organic Solar Cells: High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars (Small 37/2016). Small, 2016, 12, 5102-5102.	5.2	4
254	The Effect Of Composition Modification on the Optical Polarization Independence In Semiconductor Strain Quantum Wells. Materials Research Society Symposia Proceedings, 1995, 417, 277.	0.1	3
255	High Performance Fabry-Perot Modulator Using Interdiffused AlGaAs/GaAs Quantum Wells. Japanese Journal of Applied Physics, 1996, 35, L496-L498.	0.8	3
256	Real-Time Color-Tunable Electroluminescence From Stacked Organic LEDs Using Independently Addressable Middle Electrode. IEEE Photonics Technology Letters, 2008, 20, 1154-1156.	1.3	3
257	Charge dynamics in solar cells with a blend of ï€-conjugated polymer-fullerene studied by transient photo-generated voltage. Physical Chemistry Chemical Physics, 2012, 14, 8397.	1.3	3
258	Interdiffusion induced modification of surface-acoustic-wave AlGaAs-GaAs quantum-well modulators. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 758-764.	1.9	2
259	An effective intermediate Al/Au electrode for stacked color-tunable organic light emitting devices. , 2008, , .		2
260	Solar Cells: Thermionic Emission-Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solution-Processed Perovskites (Adv. Energy Mater. 36/2018). Advanced Energy Materials, 2018, 8, 1870155.	10.2	2
261	Upside-Down Molding Approach for Geometrical Parameter-Tunable Photonic Perovskite Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 27313-27322.	4.0	2
262	Observing the stability evolution of β-DMAxCs1-xPbI2Br through precursor incubation. Organic Electronics, 2020, 84, 105800.	1.4	2
263	InGaAs/InGaAsP diffused quantum wells optical amplifiers and modulators. , 2001, , .		1
264	Efficient optical modeling of spontaneous emission in a cylindrically layered nanostructure. Optics Express, 2007, 15, 10356.	1.7	1
265	Mixing plasmonic Au nanoparticles into all polymer layers for improving the efficiency of organic solar cells. , 2012, , .		1
266	Multiphysics modeling of plasmonic organic solar cells with a unified finite-difference method. , 2013, , .		1
267	Theoretical Studies of Plasmonic Effects in Organic Solar Cells. Green Energy and Technology, 2013, , 177-210.	0.4	1
268	Experimental Studies of Plasmonic Nanoparticle Effects on Organic Solar Cells. Green Energy and Technology, 2013, , 211-242.	0.4	1
269	Using novel metal oxides and multiple plasmonic nanostructures for emerging organic optoelectronic devices. , 2015, , .		1
270	Disorder-Delineated AlGaAs/GaAs Quantum-Well Phase Modulator. Materials Research Society Symposia Proceedings, 1997, 484, 453.	0.1	0

#	Article	IF	CITATIONS
271	Oxadiazole-Triphenylamine derivatives for OLEDs. , 2005, , .		О
272	ZnO nanorod synthesis from Zn-based II-VI semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1376-1382.	0.8	0
273	Wavelength Tunable Light Emitting Nanostructures and Devices. , 2006, , .		0
274	Comprehensive investigation of light emission of OLEDs: from absolute optical properties to the purcell effect. , 2007, , .		0
275	Simulation of light emission from a semiconductor nanowire/nanotube. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
276	Real-time voltage controlled color tunable OLEDs. , 2007, , .		0
277	The Purcell effect of silver nanoshell on the fluorescence of nanoparticles. , 2007, , .		0
278	Enhanced efficiency of a fluorescing nanoparticle with a silver shell. Journal of Physics: Conference Series, 2009, 188, 012055.	0.3	0
279	Optical design of organic/polymer solar cells and light emitting devices. , 2011, , .		Ο
280	PEDOT:PSS-free Au nanocluster treated graphene as transparent anode for organic solar cells. Proceedings of SPIE, 2012, , .	0.8	0
281	Integral equation method for analyzing purcell effect in plasmonic system. , 2012, , .		0
282	Optical properties enhancement in low-bandgap organic solar cells with embedded PEDOT:PSS gratings. Proceedings of SPIE, 2012, , .	0.8	0
283	Theoretical studies of effects of 2D plasmonic grating on electrical properties of organic solar cells. Proceedings of SPIE, 2012, , .	0.8	Ο
284	Introduction to the OQE special issue on numerical simulation of optoelectronic devices NUSOD'12. Optical and Quantum Electronics, 2013, 45, 571-571.	1.5	0
285	Plasmonic solar cells: A bridge between electromagnetics and semiconductor physics. , 2013, , .		Ο
286	Tunable nanoantenna based on graphene. , 2013, , .		0
287	Plasmonic and metal oxide systems for high performance OLEDs and OPVs. , 2015, , .		0
288	New concept to break the intrinsic properties of organic semiconductors for optical sensing applications. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
289	Hysteresis-free, stable and efficient perovskite solar cells achieved by vacuum-treated thermal annealing of CH3NH3PbI3. , 2015, , .		0
290	New low-temperature solution processes to control the formation of perovskite films for achieving high performance solar cells. , 2016, , .		0
291	A new concept to break the space charge limit of organic semiconductors for photovoltaic applications. , 2016, , .		0
292	Simulating exciton delocalization in organic solar cells by a modified drift-diffusion model. , 2017, , .		0
293	Electro-absorptive and electro-optic quantum well modulators using surface acoustic wave. , 1998, , .		0
294	CHAPTER 7. Solution Processed Metal Oxides and Hybrid Metal Oxides as Efficient Carrier Transport Layers of Organic Optoelectronic Devices. RSC Polymer Chemistry Series, 2015, , 220-254.	0.1	0
295	Controlling the Formation of Perovskite Films by Low-temperature Solution Schemes for High Performance Solar Cells. , 2016, , .		0
296	A new kind of Cuboid CH3NH3PbI3 Single Crystals for Highly Performed X-ray and Photon Detectors. , 0, , .		0
297	A new kind of Cuboid CH3NH3PbI3 Single Crystals for Highly Performed X-ray and Photon Detectors. , 0, , .		0