Linqi Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6957614/publications.pdf

Version: 2024-02-01

226	10,274	53	87
papers	citations	h-index	g-index
237	237	237	10641 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 2019, 141, 5359-5368.	13.7	465
2	Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chemical Society Reviews, 2019, 48, 428-446.	38.1	464
3	Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. ACS Nano, 2016, 10, 4779-4789.	14.6	293
4	Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nature Nanotechnology, 2013, 8, 187-192.	31.5	289
5	Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polymer Chemistry, 2014, 5, 1503-1518.	3.9	225
6	Thermoresponsive Micellization of Poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in Water. Macromolecules, 2005, 38, 5743-5747.	4.8	212
7	Synthesis of Noble Metal Nanoparticles Embedded in the Shell Layer of Coreâ [°] Shell Poly(styrene- <i>co</i> -4-vinylpyridine) Micospheres and Their Application in Catalysis. Chemistry of Materials, 2008, 20, 2144-2150.	6.7	161
8	Micellization of Thermo- and pH-Responsive Triblock Copolymer of Poly(ethyleneÂglycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide). Macromolecules, 2005, 38, 8850-8852.	4.8	133
9	Glucose-Responsive Micelles from Self-Assembly of Poly(ethylene glycol)- <i>b</i> -Poly(acrylic) Tj ETQq1 1 0.78431 25, 12522-12528.		verlock 1 <mark>0 T</mark> 133
10	Maintenance of Amyloid β Peptide Homeostasis by Artificial Chaperones Based on Mixedâ€Shell Polymeric Micelles. Angewandte Chemie - International Edition, 2014, 53, 8985-8990.	13.8	132
11	Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomaterialia, 2018, 65, 339-348.	8.3	131
12	Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles. Journal of Molecular Catalysis A, 2007, 266, 233-238.	4.8	130
13	Multistage Delivery Nanoparticle Facilitates Efficient CRISPR/dCas9 Activation and Tumor Growth Suppression In Vivo. Advanced Science, 2019, 6, 1801423.	11.2	128
14	Silver-Decorated Polymeric Micelles Combined with Curcumin for Enhanced Antibacterial Activity. ACS Applied Materials & Diterraces, 2017, 9, 16880-16889.	8.0	126
15	Nanocomposites Inhibit the Formation, Mitigate the Neurotoxicity, and Facilitate the Removal of \hat{l}^2 -Amyloid Aggregates in Alzheimer $\hat{a} \in \mathbb{T}^8$ s Disease Mice. Nano Letters, 2019, 19, 674-683.	9.1	124
16	Formation of Complex Micelles with Double-Responsive Channels from Self-Assembly of Two Diblock Copolymers. Angewandte Chemie - International Edition, 2006, 45, 4959-4962.	13.8	119
17			
17	Phenylboronic Acid-Based Complex Micelles with Enhanced Glucose-Responsiveness at Physiological pH by Complexation with Glycopolymer. Biomacromolecules, 2012, 13, 3409-3417.	5.4	118

#	Article	IF	CITATIONS
19	Eradication of Multidrugâ€Resistant <i>Staphylococcal</i> Infections by Lightâ€Activatable Micellar Nanocarriers in a Murine Model. Advanced Functional Materials, 2017, 27, 1701974.	14.9	111
20	Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Frontiers in Chemistry, 2019, 7, 872.	3.6	104
21	pH/Sugar Dual Responsive Core-Cross-Linked PIC Micelles for Enhanced Intracellular Protein Delivery. Biomacromolecules, 2013, 14, 3434-3443.	5.4	103
22	A G-Quadruplex Hydrogel via Multicomponent Self-Assembly: Formation and Zero-Order Controlled Release. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13056-13067.	8.0	103
23	Cooperative Macromolecular Self-Assembly toward Polymeric Assemblies with Multiple and Bioactive Functions. Accounts of Chemical Research, 2014, 47, 1426-1437.	15.6	102
24	A Biâ€Sheath Fiber Sensor for Giant Tensile and Torsional Displacements. Advanced Functional Materials, 2017, 27, 1702134.	14.9	100
25	Dualâ€Locking Nanoparticles Disrupt the PDâ€1/PDâ€L1 Pathway for Efficient Cancer Immunotherapy. Advanced Materials, 2019, 31, e1905751.	21.0	95
26	Formation of Gold@Polymer Coreâ^'Shell Particles and Gold Particle Clusters on a Template of Thermoresponsive and pH-Responsive Coordination Triblock Copolymer. Langmuir, 2006, 22, 9393-9396.	3.5	92
27	A glucose-responsive complex polymeric micelle enabling repeated on–off release and insulin protection. Soft Matter, 2013, 9, 1636-1644.	2.7	87
28	Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today, 2020, 35, 100970.	11.9	86
29	Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance. Theranostics, 2016, 6, 1277-1292.	10.0	85
30	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	8.2	85
31	Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomaterialia, 2018, 79, 331-343.	8.3	82
32	Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 2020, 258, 120275.	11.4	81
33	A General Hypoxiaâ€Responsive Molecular Container for Tumorâ€Targeted Therapy. Advanced Materials, 2020, 32, e1908435.	21.0	81
34	Thermoresponsive hydrogel of poly(glycidyl methacrylate-co-N-isopropylacrylamide) as a nanoreactor of gold nanoparticles. Journal of Polymer Science Part A, 2007, 45, 2812-2819.	2.3	80
35	Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Research, 2016, 9, 1022-1031.	10.4	77
36	Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles. Journal of Colloid and Interface Science, 2008, 322, 414-420.	9.4	75

#	Article	IF	CITATIONS
37	Synthesis of gold nanoparticles stabilized with poly(N-isopropylacrylamide)-co-poly(4-vinyl pyridine) colloid and their application in responsive catalysis. Journal of Molecular Catalysis A, 2008, 280, 1-6.	4.8	74
38	Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilmsâ€"An intravital imaging study in mice. Science Advances, 2020, 6, eabb1112.	10.3	73
39	In Vivo Biodistribution of Mixed Shell Micelles with Tunable Hydrophilic/Hydrophobic Surface. Biomacromolecules, 2013, 14, 460-467.	5.4	72
40	Hemin-Block Copolymer Micelle as an Artificial Peroxidase and Its Applications in Chromogenic Detection and Biocatalysis. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19207-19216.	8.0	71
41	Double-responsive core–shell–corona micelles from self-assembly of diblock copolymer of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropylacrylamide). Polymer, 2006, 47, 4581-4587.	3.8	69
42	J- and H-Aggregates of 5,10,15,20-Tetrakis-(4-sulfonatophenyl)-porphyrin and Interconversion in PEG-b-P4VP Micelles. Biomacromolecules, 2008, 9, 2601-2608.	5.4	69
43	Delivery of Intact Transcription Factor by Using Selfâ€Assembled Supramolecular Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 3058-3062.	13.8	66
44	Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions. Soft Matter, 2013, 9, 8589.	2.7	64
45	A charge-adaptive nanosystem for prolonged and enhanced in vivo antibiotic delivery. Chemical Communications, 2016, 52, 6265-6268.	4.1	64
46	A Multifunctional Nanocarrier Based on Nanogated Mesoporous Silica for Enhanced Tumorâ€Specific Uptake and Intracellular Delivery. Macromolecular Bioscience, 2012, 12, 251-259.	4.1	63
47	Heat Shock Protein Inspired Nanochaperones Restore Amyloidâ€Î² Homeostasis for Preventative Therapy of Alzheimer's Disease. Advanced Science, 2019, 6, 1901844.	11.2	63
48	Mimicking Molecular Chaperones to Regulate Protein Folding. Advanced Materials, 2020, 32, e1805945.	21.0	61
49	Macrocyclicâ€Amphiphileâ€Based Selfâ€Assembled Nanoparticles for Ratiometric Delivery of Therapeutic Combinations to Tumors. Advanced Materials, 2021, 33, e2007719.	21.0	61
50	A Convenient Method of Tuning Amphiphilic Block Copolymer Micellar Morphology. Macromolecules, 2004, 37, 2551-2555.	4.8	59
51	Glucose-Responsive Polymer Vesicles Templated by \hat{l}_{\pm} -CD/PEG Inclusion Complex. Biomacromolecules, 2015, 16, 1372-1381.	5.4	59
52	Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. Advanced Functional Materials, 2020, 30, 2004942.	14.9	59
53	In Situ Modification of the Tumor Cell Surface with Immunomodulating Nanoparticles for Effective Suppression of Tumor Growth in Mice. Advanced Materials, 2019, 31, e1902542.	21.0	58
54	Mimetic Heat Shock Protein Mediated Immune Process to Enhance Cancer Immunotherapy. Nano Letters, 2020, 20, 4454-4463.	9.1	58

#	Article	IF	CITATIONS
55	Glucose and H ₂ O ₂ dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. Nanoscale, 2019, 11, 9163-9175.	5.6	57
56	A biomimetic platelet based on assembling peptides initiates artificial coagulation. Science Advances, 2020, 6, eaaz4107.	10.3	56
57	Noncanonical Amino Acids for Hypoxia-Responsive Peptide Self-Assembly and Fluorescence. Journal of the American Chemical Society, 2021, 143, 13854-13864.	13.7	56
58	Fabrication of Complex Micelles with Tunable Shell for Application in Controlled Drug Release. Macromolecular Bioscience, 2009, 9, 1185-1193.	4.1	55
59	Effect of Coordination on the Glucoseâ€Responsiveness of PEGâ€ <i>b</i> â€(PAAâ€ <i>co</i> â€PAAPBA) Micelles. Macromolecular Rapid Communications, 2010, 31, 1628-1634.	3.9	55
60	Temperatureâ€Responsive Mixedâ€Shell Polymeric Micelles for the Refolding of Thermally Denatured Proteins. Chemistry - A European Journal, 2013, 19, 7437-7442.	3.3	55
61	Reverse micelles of star-block copolymer as nanoreactors for preparation of gold nanoparticles. Polymer, 2006, 47, 8480-8487.	3.8	54
62	Temperature-responsive multilayered micelles formed from the complexation of PNIPAM-b-P4VP block-copolymer and PS-b-PAA core–shell micelles. Polymer, 2008, 49, 2548-2552.	3.8	54
63	Artificial Peroxidase/Oxidase Multiple Enzyme System Based on Supramolecular Hydrogel and Its Application as a Biocatalyst for Cascade Reactions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16694-16705.	8.0	52
64	Peptide Tectonics: Encoded Structural Complementarity Dictates Programmable Selfâ€Assembly. Advanced Science, 2019, 6, 1802043.	11.2	51
65	Coreâ^'Shellâ^'Corona Auâ^'Micelle Composites with a Tunable Smart Hybrid Shell. Langmuir, 2008, 24, 8198-8204.	3.5	50
66	Self-Regulated Multifunctional Collaboration of Targeted Nanocarriers for Enhanced Tumor Therapy. Biomacromolecules, 2014, 15, 3634-3642.	5.4	49
67	Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. Journal of Controlled Release, 2021, 329, 1102-1116.	9.9	49
68	Adsorption of Poly(4-vinyl pyridine) Unimers into Polystyrene-Block-Poly(acrylic acid) Micelles in Ethanol Due to Hydrogen Bonding. Macromolecules, 2004, 37, 2924-2929.	4.8	48
69	Surface Phase Separation and Morphology of Stimuli Responsive Complex Micelles. Macromolecular Rapid Communications, 2007, 28, 1062-1069.	3.9	48
70	Thermosensitive Nanoparticles Selfâ€Assembled from PCLâ€∢i>b⟨/i>â€PEOâ€∢i>b⟨/i>â€PNIPAAm Triblock Copolymers and their Potential for Controlled Drug Release. Macromolecular Bioscience, 2010, 10, 621-631.	4.1	47
71	Comicellization of Poly(ethylene glycol)-block-poly(acrylic acid) and Poly(4-vinylpyridine) in Ethanol. Macromolecules, 2005, 38, 899-903.	4.8	46
72	Synthetic Nanochaperones Facilitate Refolding of Denatured Proteins. ACS Nano, 2017, 11, 10549-10557.	14.6	46

#	Article	IF	CITATIONS
73	Phosphorylcholine-Based Polymer Encapsulated Chitosan Nanoparticles Enhance the Penetration of Antimicrobials in a Staphylococcal Biofilm. ACS Macro Letters, 2019, 8, 651-657.	4.8	46
74	Cooperative self-assembly of porphyrins with polymers possessing bioactive functions. Chemical Communications, 2016, 52, 13543-13555.	4.1	45
75	NanoRNP Overcomes Tumor Heterogeneity in Cancer Treatment. Nano Letters, 2019, 19, 7662-7672.	9.1	45
76	A Guanosineâ€Quadruplex Hydrogel as Cascade Reaction Container Consuming Endogenous Glucose for Infected Wound Treatment—A Study in Diabetic Mice. Advanced Science, 2022, 9, e2103485.	11.2	45
77	Antifungalâ€Inbuilt Metal–Organicâ€Frameworks Eradicate <i>Candida albicans</i> Biofilms. Advanced Functional Materials, 2020, 30, 2000537.	14.9	44
78	Thermosensitive and pH-sensitive Au–Pd bimetallic nanocomposites. Journal of Colloid and Interface Science, 2009, 331, 104-112.	9.4	42
79	Thermoresponsive core–shell–corona micelles of poly(ethyleneglycol)-b-poly(N-isopropylacrylamide)-b-polystyrene. Polymer, 2006, 47, 8203-8209.	3.8	39
80	A Highâ€Throughput Platform for Formulating and Screening Multifunctional Nanoparticles Capable of Simultaneous Delivery of Genes and Transcription Factors. Angewandte Chemie - International Edition, 2016, 55, 169-173.	13.8	39
81	Ligand-Switchable Micellar Nanocarriers for Prolonging Circulation Time and Enhancing Targeting Efficiency. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5296-5304.	8.0	39
82	Formation of Core-Shell-Corona Micellar Complexes through Adsorption of Double Hydrophilic Diblock Copolymers into Core-Shell Micelles. Macromolecular Rapid Communications, 2005, 26, 1341-1345.	3.9	38
83	Oneâ€stage synthesis of narrowly dispersed polymeric coreâ€shell microspheres. Journal of Polymer Science Part A, 2008, 46, 1192-1202.	2.3	38
84	Glucose and H ₂ O ₂ Dual-Responsive Polymeric Micelles for the Self-Regulated Release of Insulin. ACS Applied Bio Materials, 2020, 3, 1598-1606.	4.6	37
85	Chiral Micelles of Achiral TPPS and Diblock Copolymer Induced by Amino Acids. Macromolecules, 2009, 42, 6253-6260.	4.8	36
86	A facile strategy to fabricate glucose-responsive vesicles <i>via</i> a template of thermo-sensitive micelles. Polymer Chemistry, 2015, 6, 3837-3846.	3.9	36
87	Axial modification inhibited H-aggregation of phthalocyanines in polymeric micelles for enhanced PDT efficacy. Chemical Communications, 2018, 54, 3985-3988.	4.1	36
88	Pyranine-Induced Micellization of Poly(ethylene glycol)-block-poly(4-vinylpyridine) and pH-Triggered Release of Pyranine from the Complex Micelles. Langmuir, 2007, 23, 7498-7504.	3.5	35
89	A strategy to facilitate reuse of palladium catalyst stabilized by block copolymer micelles. Journal of Molecular Catalysis A, 2007, 277, 102-106.	4.8	34
90	The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of beta-amyloid fibrils and reducing consequent toxicity. Chemical Communications, 2017, 53, 1289-1292.	4.1	34

#	Article	IF	Citations
91	Core-Shell-Corona Micellar Complexes between Poly(ethylene glycol)-block-poly(4-vinyl pyridine) and Polystyrene-block-poly(acrylic acid). Macromolecular Chemistry and Physics, 2005, 206, 2354-2361.	2.2	33
92	Thermoresponsiveness of Hybrid Micelles from Poly(ethylene glycol)-block-poly(4-vinylpyridium) Cations and SO42-Anions in Aqueous Solutions. Langmuir, 2006, 22, 1474-1477.	3.5	33
93	A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake. Chemical Communications, 2015, 51, 14985-14988.	4.1	33
94	Nitrilotriacetic Acid-Functionalized Glucose-Responsive Complex Micelles for the Efficient Encapsulation and Self-Regulated Release of Insulin. Langmuir, 2018, 34, 12116-12125.	3.5	33
95	Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo. Journal of Controlled Release, 2019, 293, 73-83.	9.9	33
96	Facile Strategy for Synthesis of Silica/Polymer Hybrid Hollow Nanoparticles with Channels. Langmuir, 2010, 26, 18503-18507.	3.5	31
97	Supramolecular Antagonists Promote Mitochondrial Dysfunction. Nano Letters, 2021, 21, 5730-5737.	9.1	30
98	Formation of Spindlelike Aggregates and Flowerlike Arrays of Polystyrene-b-poly(acrylic acid) Micelles. Langmuir, 2004, 20, 4787-4790.	3.5	29
99	Composite Worm-Like Aggregates Formed from a Pair of Block-Copolymers Containing Hydrogen-Bonding Donor and Acceptor. Macromolecular Rapid Communications, 2007, 28, 194-199.	3.9	29
100	Pure Anisotropic Hydrogel with an Inherent Chiral Internal Structure Based on the Chiral Nematic Liquid Crystal Phase of Rodlike Viruses. ACS Macro Letters, 2015, 4, 1215-1219.	4.8	29
101	Recent Advances and Future Prospects on Adaptive Biomaterials for Antimicrobial Applications. Macromolecular Bioscience, 2019, 19, e1900289.	4.1	29
102	A novel strategy based on a ligand-switchable nanoparticle delivery system for deep tumor penetration. Nanoscale Horizons, 2019, 4, 658-666.	8.0	29
103	Nanocarriers responsive to a hypoxia gradient facilitate enhanced tumor penetration and improved anti-tumor efficacy. Biomaterials Science, 2019, 7, 2986-2995.	5.4	29
104	Unimacromolucule Exchange between Bimodal Micelles Self-Assembled by Polystyrene-block-Poly(acrylic acid) and Polystyrene-block-Poly(amino propylene-glycol methacrylate) in Water. Journal of Physical Chemistry B, 2004, 108, 200-204.	2.6	28
105	Synthesis of Fe3O4@SiO2@polymer nanoparticles for controlled drug release. Science China Chemistry, 2010, 53, 514-518.	8.2	28
106	Stability enhancement of ZnTPPS in acidic aqueous solutions by polymeric micelles. Chemical Communications, 2010, 46, 6560.	4.1	28
107	Nitrilotriacetic Acid (NTA) and Phenylboronic Acid (PBA) Functionalized Nanogels for Efficient Encapsulation and Controlled Release of Insulin. ACS Biomaterials Science and Engineering, 2018, 4, 2007-2017.	5 . 2	28
108	Nanochaperones Mediated Delivery of Insulin. Nano Letters, 2020, 20, 1755-1765.	9.1	28

#	Article	IF	Citations
109	Zinc porphyrin/fullerene/block copolymer micelle for enhanced electron transfer ability and stability. RSC Advances, 2017, 7, 10100-10107.	3.6	27
110	Evaporation-Induced Aggregation of Polystyrene-block-poly(acrylic acid) Micelles to Microcubic Particles. Langmuir, 2003, 19, 6026-6031.	3.5	26
111	Liposomes with Water as a pHâ€Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angewandte Chemie - International Edition, 2021, 60, 17714-17719.	13.8	26
112	Initial copolymer concentration influence on self-assembly of PS38-b-P(AA190-co-MA20) in water. Physical Chemistry Chemical Physics, 2004, 6, 109.	2.8	25
113	Photoswitchable Micelles for the Control of Singlet-Oxygen Generation in Photodynamic Therapies. Biomacromolecules, 2018, 19, 2023-2033.	5.4	25
114	Directional molecular sliding movement in peptide hydrogels accelerates cell proliferation. Chemical Science, 2020, 11, 1383-1393.	7.4	25
115	<i>In Situ</i> Self-Sorting Peptide Assemblies in Living Cells for Simultaneous Organelle Targeting. Journal of the American Chemical Society, 2022, 144, 9312-9323.	13.7	25
116	Block-Selective Solvent Influence on Morphology of the Micelles Self-Assembled by PS38-b-P(AA190-co-MA20). Macromolecular Chemistry and Physics, 2004, 205, 2017-2025.	2.2	24
117	Contractive Polymeric Complex Micelles as Thermoâ€Sensitive Nanopumps. Macromolecular Rapid Communications, 2008, 29, 1410-1414.	3.9	24
118	Controlled Release of Ionic Drugs from Complex Micelles with Charged Channels. Biomacromolecules, 2012, 13, 1307-1314.	5.4	24
119	Effect of the Surface Charge of Artificial Chaperones on the Refolding of Thermally Denatured Lysozymes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3669-3678.	8.0	24
120	Hemin-micelles immobilized in alginate hydrogels as artificial enzymes with peroxidase-like activity and substrate selectivity. Biomaterials Science, 2017, 5, 570-577.	5.4	24
121	Spatial Confined Synergistic Enzymes with Enhanced Uricolytic Performance and Reduced Toxicity for Effective Gout Treatment. Small, 2018, 14, e1801865.	10.0	24
122	Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological basal and prandial insulin delivery. Science China Chemistry, 2019, 62, 637-648.	8.2	24
123	Calixareneâ€Embedded Nanoparticles for Interferenceâ€Free Gene–Drug Combination Cancer Therapy. Small, 2021, 17, e2006223.	10.0	24
124	Tau-Targeted Multifunctional Nanoinhibitor for Alzheimer's Disease. ACS Applied Materials & Disease. Disease	8.0	24
125	Chaperone-like \hat{l} ±-cyclodextrins assisted self-assembly of double hydrophilic block copolymers in aqueous medium. Polymer, 2009, 50, 855-859.	3.8	23
126	Nanofilamentous Virus-Based Dynamic Hydrogels with Tunable Internal Structures, Injectability, Self-Healing, and Sugar Responsiveness at Physiological pH. Langmuir, 2018, 34, 12914-12923.	3.5	23

#	Article	IF	CITATIONS
127	Raspberry-Like Aggregates Containing Secondary Nanospheres of Polystyrene-block-poly(4-vinylpyridine) Micelles. Macromolecular Rapid Communications, 2006, 27, 1833-1837.	3.9	22
128	In-Situ Polymerization at the Interfaces of Micelles: A "Grafting From―Method to Prepare Micelles with Mixed Coronal Chains. Journal of Physical Chemistry B, 2008, 112, 12612-12617.	2.6	22
129	Modulating the catalytic activity of Au/micelles by tunable hydrophilic channels. Journal of Colloid and Interface Science, 2010, 341, 273-279.	9.4	22
130	Iminoboronate-based dual-responsive micelles via subcomponent self-assembly for hydrophilic 1,2-diol-containing drug delivery. RSC Advances, 2017, 7, 21328-21335.	3.6	22
131	Polymerization-induced self-assembly of large-scale iohexol nanoparticles as contrast agents for X-ray computed tomography imaging. Polymer Chemistry, 2018, 9, 2926-2935.	3.9	22
132	Multistage Adaptive Nanoparticle Overcomes Biological Barriers for Effective Chemotherapy. Small, 2021, 17, e2100578.	10.0	22
133	Formation of hybrid micelles between poly(ethylene glycol)-block-poly(4-vinylpyridinium) cations and sulfate anions in an aqueous milieu. Soft Matter, 2005, 1, 455.	2.7	21
134	Thermosensitive mixed shell polymeric micelles decorated with gold nanoparticles at the outmost surface: tunable surface plasmon resonance and enhanced catalytic properties with excellent colloidal stability. RSC Advances, 2015, 5, 47458-47465.	3.6	21
135	Glucose-responsive complex micelles for self-regulated delivery of insulin with effective protection of insulin and enhanced hypoglycemic activity in vivo. Colloids and Surfaces B: Biointerfaces, 2019, 180, 376-383.	5.0	21
136	Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS Applied Bio Materials, 2020, 3, 5529-5551.	4.6	21
137	An Exceptional Broad-Spectrum Nanobiocide for Multimodal and Synergistic Inactivation of Drug-Resistant Bacteria. CCS Chemistry, 2022, 4, 272-285.	7.8	21
138	Self-Amplifying Assembly of Peptides in Macrophages for Enhanced Inflammatory Treatment. Journal of the American Chemical Society, 2022, 144, 6907-6917.	13.7	21
139	Polymerization of Spherical Poly(styrene-b-4-vinylpyridine) Vesicles to Giant Tubes. Macromolecules, 2005, 38, 4548-4550.	4.8	20
140	Chiral Polymeric Micelles From Electrostatic Assembly Between Achiral Porphyrins and Block Copolymers. Macromolecular Rapid Communications, 2008, 29, 214-218.	3.9	20
141	Complex micelles with a responsive shell for controlling of enzymatic degradation. Polymer, 2012, 53, 3559-3565.	3.8	20
142	Synthesis of end-functionalized boronic acid containing copolymers and their bioconjugates with rod-like viruses for multiple responsive hydrogels. Polymer Chemistry, 2014, 5, 5029-5036.	3.9	20
143	Aggregation Behavior of the Template-Removed 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin Chiral Array Directed by Poly(ethylene glycol)- <i>block</i> -poly(<scp>I</scp> -lysine). Langmuir, 2014, 30, 4797-4805.	3.5	20
144	Artificial Chaperones Based on Mixed Shell Polymeric Micelles: Insight into the Mechanism of the Interaction of the Chaperone with Substrate Proteins Using Förster Resonance Energy Transfer. ACS Applied Materials & Diterfaces, 2015, 7, 10238-10249.	8.0	20

#	Article	IF	Citations
145	Reversible Interactions of Proteins with Mixed Shell Polymeric Micelles: Tuning the Surface Hydrophobic/Hydrophilic Balance toward Efficient Artificial Chaperones. Langmuir, 2016, 32, 2737-2749.	3.5	20
146	Ellipsoidal Colloids with a Controlled Surface Roughness via Bioinspired Surface Engineering: Building Blocks for Liquid Marbles and Superhydrophobic Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7648-7657.	8.0	20
147	Protecting enzymes against heat inactivation by temperature-sensitive polymer in confined space. Physical Chemistry Chemical Physics, 2011, 13, 16265.	2.8	19
148	Chiral Conversion and Memory of TPPS J-aggregates in Complex Micelles: PEG- <i>b</i> -PDMAEMA/TPPS. Langmuir, 2011, 27, 11554-11559.	3 . 5	19
149	Synthesis of Poly(acyclic orthoester)s: Acidâ€Sensitive Biomaterials for Enhancing Immune Responses of Protein Vaccine. Angewandte Chemie - International Edition, 2020, 59, 7235-7239.	13.8	19
150	Stapled Liposomes Enhance Crossâ€Priming of Radioâ€Immunotherapy. Advanced Materials, 2022, 34, e2107161.	21.0	19
151	Novel Au–Pd bimetallic core–shell nanocomplex and its catalytic activity modulation. Journal of Colloid and Interface Science, 2010, 350, 260-267.	9.4	18
152	Self-Assembly Molecular Chaperone to Concurrently Inhibit the Production and Aggregation of Amyloid \hat{l}^2 Peptide Associated with Alzheimer $\hat{a} \in \mathbb{N}$ s Disease. ACS Macro Letters, 2018, 7, 983-989.	4.8	17
153	Novel Structured Composites Formed from Gold Nanoparticles and Diblock Copolymers. Macromolecular Rapid Communications, 2007, 28, 1350-1355.	3.9	16
154	Fabrication of an asymmetric hollow particle with a thermo-sensitive PNIPAM inside corona. Polymer, 2009, 50, 825-831.	3.8	16
155	Enhancement of the photostability and photoactivity of metallo-meso-5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrins by polymeric micelles. Journal of Colloid and Interface Science, 2012, 388, 80-85.	9.4	16
156	Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies. Biomaterials, 2020, 232, 119737.	11.4	16
157	Applications and Perspectives of Cascade Reactions in Bacterial Infection Control. Frontiers in Chemistry, 2019, 7, 861.	3.6	16
158	Investigation of the cononsolvency effect on micellization behavior of polystyrene-b-poly(N-isopropylacrylamide). Journal of Colloid and Interface Science, 2008, 317, 637-642.	9.4	15
159	MgTPPS/block copolymers complexes for enhanced stability and photoactivity. RSC Advances, 2013, 3, 18351.	3.6	15
160	Structure change of mixed shell polymeric micelles and its interaction with bio-targets as probed by the 1-anilino-8-naphthalene sulfonate (ANS) fluorescence. Polymer, 2013, 54, 3633-3640.	3.8	15
161	Spectroscopic studies on the photostability and photoactivity of metallo-tetraphenylporphyrin in micelles. Colloid and Polymer Science, 2014, 292, 1329-1337.	2.1	15
162	A facile one-pot method to prepare peroxidase-like nanogel artificial enzymes for highly efficient and controllable catalysis. Colloids and Surfaces B: Biointerfaces, 2019, 174, 352-359.	5.0	15

#	Article	IF	Citations
163	Multifunctional Nanomodulators Regulate Multiple Pathways To Enhance Antitumor Immunity. ACS Applied Bio Materials, 2020, 3, 4635-4642.	4.6	15
164	Neuroprotective Nanoscavenger Induces Coaggregation of \hat{l}^2 -Amyloid and Facilitates Its Clearance in Alzheimer $\hat{a} \in \mathbb{T}$ s Disease Brain. CCS Chemistry, 2021, 3, 2316-2330.	7.8	15
165	Modular ketal-linked prodrugs and biomaterials enabled by organocatalytic transisopropenylation of alcohols. Nature Communications, 2021, 12, 5532.	12.8	15
166	Trade-off effect of polymeric nano-medicine in anti-cancer drug delivery. Giant, 2021, 8, 100074.	5.1	15
167	Bi-specific macrophage nano-engager for cancer immunotherapy. Nano Today, 2021, 41, 101313.	11.9	15
168	Engineering a pathological tau-targeted nanochaperone for selective and synergetic inhibition of tau pathology in Alzheimer's Disease. Nano Today, 2022, 43, 101388.	11.9	15
169	In Situ Antigenâ€Capturing Nanochaperone Toward Personalized Nanovaccine for Cancer Immunotherapy. Small, 2022, 18, .	10.0	15
170	Formation of flower-like aggregates from assembly of single polystyrene-b-poly(acrylic acid) micelles. New Journal of Chemistry, 2004, 28, 1038.	2.8	14
171	Nanometerâ€Scaled Hollow Spherical Micelles with Hydrophilic Channels and the Controlled Release of Ibuprofen. Macromolecular Rapid Communications, 2008, 29, 1895-1901.	3.9	14
172	Polymeric Micelles with Tunable Channels. Macromolecular Bioscience, 2010, 10, 1397-1405.	4.1	14
173	A biocompatible cobaltporphyrin-based complex micelle constructed via supramolecular assembly for oxygen transfer. Biomaterials Science, 2016, 4, 857-862.	5.4	14
174	Rational design of drug delivery systems for potential programmable drug release and improved therapeutic effect. Materials Chemistry Frontiers, 2019, 3, 1159-1167.	5.9	14
175	A Balance Between Capture and Release: How Nanochaperones Regulate Refolding of Thermally Denatured Proteins. Angewandte Chemie - International Edition, 2021, 60, 10865-10870.	13.8	14
176	An Antibody-like Polymeric Nanoparticle Removes Intratumoral Galectin-1 to Enhance Antitumor T-Cell Responses in Cancer Immunotherapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22159-22168.	8.0	14
177	Adsorption of poly(N-isopropylacrylamide-co-4-vinylpyridine) onto core–shell poly(styrene-co-methylacrylic acid) microspheres. European Polymer Journal, 2008, 44, 1175-1182.	5.4	13
178	Catalytic properties of gold nanoparticles immobilized on the surfaces of nanocarriers. Journal of Nanoparticle Research, 2010, 12, 1877-1887.	1.9	13
179	Improved thermal stability of lipase in W/O microemulsion by temperature-sensitive polymers. Colloids and Surfaces B: Biointerfaces, 2013, 111 , $587-593$.	5.0	13
180	In-biofilm generation of nitric oxide using a magnetically-targetable cascade-reaction container for eradication of infectious biofilms. Bioactive Materials, 2022, 14, 321-334.	15.6	13

#	Article	IF	Citations
181	Spatial Distribution Control of Antimicrobial Peptides through a Novel Polymeric Carrier for Safe and Efficient Cancer Treatment. Advanced Materials, 2022, 34, e2201945.	21.0	13
182	Reply to Comment on "J- and H-Aggregates of 5,10,15,20-Tetrakis-(4-sulfonatophenyl)-porphyrin and Interconversion in PEG- <i>b</i> -P4VP Micelles― Biomacromolecules, 2009, 10, 3343-3344.	5.4	12
183	Recent advances and future challenges in the use of nanoparticles for the dispersal of infectious biofilms. Journal of Materials Science and Technology, 2021, 84, 208-218.	10.7	12
184	Calixarene-integrated nano-drug delivery system for tumor-targeted delivery and tracking of anti-cancer drugs in vivo. Nano Research, 2022, 15, 7295-7303.	10.4	12
185	Adjustable temperature sensor with double thermoresponsiveness based on the aggregation property of binary diblock copolymers. Journal of Applied Polymer Science, 2006, 102, 3144-3148.	2.6	11
186	Expulsion of Unimers from Polystyrene-block-poly(acrylic acid) Micelles. Macromolecular Chemistry and Physics, 2006, 207, 521-527.	2.2	11
187	Optic and catalytic properties of gold nanoparticles tuned by homopolymers. Science in China Series B: Chemistry, 2009, 52, 1372-1381.	0.8	11
188	A Valid Way of Quasi-Quantificationally Controlling the Self-Assembly of Block Copolymers in Confined Space. Langmuir, 2009, 25, 2757-2764.	3.5	11
189	Complex micelles with the bioactive function of reversible oxygen transfer. Nano Research, 2015, 8, 491-501.	10.4	11
190	Stabilization of Multimeric Enzymes against Heat Inactivation by Chitosan- <i>graft</i> -poly(<i>N</i> -isopropylacrylamide) in Confined Spaces. ACS Biomaterials Science and Engineering, 2017, 3, 3141-3145.	5.2	10
191	Liposomes with Water as a pHâ€Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angewandte Chemie, 2021, 133, 17855-17860.	2.0	10
192	Novel composite adsorbent for adsorption of urea. Polymers for Advanced Technologies, 1999, 10, 69-73.	3.2	9
193	Electric-field-assisted assembly and alignment of polystyrene-b-poly(acrylic acid) micelles. Colloid and Polymer Science, 2006, 284, 1179-1183.	2.1	9
194	Synthesis of hollow crosslinked miktoarm polymer using miniemulsion as templates. Journal of Polymer Science Part A, 2009, 47, 1651-1660.	2.3	9
195	Immune modulating nanoparticles depleting tumor-associated macrophages to enhance immune checkpoint blockade therapy. Chemical Engineering Journal, 2022, 435, 134779.	12.7	9
196	Micellization and luminescence of PEG-b-P4VP/Europium(III)/1,10-phenanthroline complex. Colloid and Polymer Science, 2010, 288, 1041-1046.	2.1	8
197	Nanogated vessel based on polypseudorotaxane-capped mesoporous silica via a highly acid-labile benzoic-imine linker. Journal of Controlled Release, 2011, 152, e81-e82.	9.9	8
198	A near-infrared light-excitable immunomodulating nano-photosensitizer for effective photoimmunotherapy. Biomaterials Science, 2021, 9, 4191-4198.	5.4	8

#	Article	IF	CITATIONS
199	Tailoring a Nanochaperone to Regulate αâ€5ynuclein Assembly. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
200	Intensity-tunable micelles and films containing bimetal ionsâ€"europium(III) and terbium(III). Colloid and Polymer Science, 2011, 289, 1429-1435.	2.1	7
201	Micellization of copolymers via noncovalent interaction with TPPS and aggregation of TPPS. Science China Chemistry, 2011, 54, 343-350.	8.2	7
202	Flexible Electronics: A Biâ€Sheath Fiber Sensor for Giant Tensile and Torsional Displacements (Adv.) Tj ETQq0 0 (O rgBT JOve	erlock 10 Tf 5
203	Tumor targeted delivery of siRNA by a nano-scale quaternary polyplex for cancer treatment. Chemical Engineering Journal, 2021, 425, 130590.	12.7	7
204	Complex aggregation of TPPS and PEG-b-P4VP in confined space. Physical Chemistry Chemical Physics, 2010, 12, 11380.	2.8	6
205	A strategy to stabilize the confined chiral TPPS J-aggregate by ionic block copolymer. Colloid and Polymer Science, 2013, 291, 2975-2984.	2.1	6
206	Encapsulation of Photothermal Nanoparticles in Stealth and pH-Responsive Micelles for Eradication of Infectious Biofilms In Vitro and In Vivo. Nanomaterials, 2021, 11, 3180.	4.1	6
207	Self-targeting of zwitterion-based platforms for nano-antimicrobials and nanocarriers. Journal of Materials Chemistry B, 2022, 10, 2316-2322.	5.8	6
208	Filamentous Viruses Grafted with Thermoresponsive Block Polymers: Liquid Crystal Behaviors of a Rodlike Colloidal Model with "True―Attractive Interactions. Macromolecules, 2018, 51, 8013-8026.	4.8	5
209	Self-Assembled Nanochaperones Inhibit the Aggregation of Human Islet Amyloid Polypeptide Associated with Type 2 Diabetes. ACS Macro Letters, 2021, 10, 662-670.	4.8	5
210	Complex Micelles with Glucose-Responsive Shells for Self-Regulated Release of Glibenclamide. Australian Journal of Chemistry, 2014, 67, 127.	0.9	4
211	Self-assembled nanochaperones enable the disaggregation of amyloid insulin fibrils. Science China Chemistry, 2022, 65, 353-362.	8.2	4
212	B 3Q MAS NMR Study on Glucoseâ∈Responsive Micelles Selfâ∈assembled from PEGâ∈ <i>>b</i> à€P(AAâ∈ <i>co</i> àê€AAPBA). Chinese Journal of Chemistry, 2014, 32, 97-102.	4.9	3
213	A Balance Between Capture and Release: How Nanochaperones Regulate Refolding of Thermally Denatured Proteins. Angewandte Chemie, 2021, 133, 10960-10965.	2.0	3
214	Perspectives on and Need to Develop New Infection Control Strategies. , 2020, , 95-105.		3
215	Arginineâ€Rich Polymers with Poreâ€Forming Capability Enable Efficient Intracellular Delivery via Direct Translocation Across Cell Membrane. Advanced Healthcare Materials, 2022, 11, e2200371.	7.6	3
216	Synthesis of Poly(acyclic orthoester)s: Acidâ€Sensitive Biomaterials for Enhancing Immune Responses of Protein Vaccine. Angewandte Chemie, 2020, 132, 7302-7306.	2.0	2

#	Article	IF	CITATIONS
217	Synergy between "Probiotic―Carbon Quantum Dots and Ciprofloxacin in Eradicating Infectious Biofilms and Their Biosafety in Mice. Pharmaceutics, 2021, 13, 1809.	4.5	2
218	Nanochaperones tailored for insulin delivery to reduce immune clearance and enhance bioavailability of insulin. Chemical Engineering Journal, 2022, 435, 134866.	12.7	2
219	Hollow spheres with \hat{l}_{\pm} -cyclodextrin nanotube assembled shells. Carbohydrate Polymers, 2011, 83, 1611-1616.	10.2	1
220	Synthesis and research on pH and redox dual responsive UV-cross-linked micelle. Journal of Controlled Release, 2015, 213, e131-e132.	9.9	1
221	Tailoring a Nanochaperone to Regulate αâ€Synuclein Assembly. Angewandte Chemie, 0, , .	2.0	1
222	"Spear and Shield in One―Nanochaperone Enables Protein to Navigate Multiple Biological Barriers for Enhanced Tumor Synergistic Therapy. Biomaterials Science, 0, , .	5.4	1
223	Ice template-assisted assembly of spherical PS-b-PAA micelles into novel layer-by-layer hollow spheres. Physical Chemistry Chemical Physics, 2004, 6, 5087.	2.8	0
224	STUDIES ON FIBERLIKE MICELLES OF STAR BLOCK COPOLYMER/GOLD NANOPARTICLES HYBRID MATERIAL. Acta Polymerica Sinica, 2009, 009, 1025-1030.	0.0	0
225	One-pot synthesis of high-concentration mixed-shell polymeric micelles as nanochaperones for renaturation of bulk proteins. Polymer Chemistry, 0, , .	3.9	0
226	Correction to "Stabilization of Multimeric Enzymes against Heat Inactivation by Chitosan- <i>graft</i> -poly(<i>N</i> -isopropylacrylamide) in Confined Spaces― ACS Biomaterials Science and Engineering, 2022, 8, 3132-3132.	5. 2	0