Britta Will

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6957560/publications.pdf

Version: 2024-02-01

126858 128225 3,926 87 33 60 citations h-index g-index papers 93 93 93 7687 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nature Cell Biology, 2016, 18, 607-618.	4.6	519
2	Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Science Translational Medicine, 2018, 10, .	5.8	187
3	Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood, 2012, 120, 2076-2086.	0.6	181
4	<i>PU.1</i> expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared <i>cis</i> -regulatory element. Genes and Development, 2008, 22, 2085-2092.	2.7	169
5	Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nature Medicine, 2019, 25, 103-110.	15.2	169
6	Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood, 2012, 120, 1290-1298.	0.6	165
7	New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nature Chemical Biology, 2015, 11, 878-886.	3.9	151
8	IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood, 2015, 125, 3144-3152.	0.6	149
9	Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood, 2012, 120, 386-394.	0.6	146
10	Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature, 2021, 591, 117-123.	13.7	145
11	Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biology, 2019, 17, e3000301.	2.6	136
12	Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome. Blood, 2009, 114, 3899-3908.	0.6	119
13	Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nature Medicine, 2015, 21, 1172-1181.	15.2	112
14	A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. Journal of Clinical Investigation, 2007, 117, 2611-2620.	3.9	109
15	Stem and progenitor cell alterations in myelodysplastic syndromes. Blood, 2017, 129, 1586-1594.	0.6	93
16	Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nature Immunology, 2013, 14, 437-445.	7.0	92
17	LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood, 2018, 131, 1730-1742.	0.6	92
18	Pharmacological inhibition of the transcription factor PU.1 in leukemia. Journal of Clinical Investigation, 2017, 127, 4297-4313.	3.9	89

#	Article	IF	CITATIONS
19	Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. Journal of Clinical Investigation, 2018, 128, 5479-5488.	3.9	68
20	A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. Journal of Experimental Medicine, 2012, 209, 35-50.	4.2	67
21	Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/ \hat{l}^2 -Catenin Activation. Cancer Research, 2017, 77, 4846-4857.	0.4	61
22	Phase II Study of the ALK5 Inhibitor Galunisertib in Very Low-, Low-, and Intermediate-Risk Myelodysplastic Syndromes. Clinical Cancer Research, 2019, 25, 6976-6985.	3.2	55
23	Targeting CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPα. Journal of Clinical Investigation, 2012, 122, 2955-2966.	3.9	55
24	PU.1-Dependent Enhancer Decommissioning Drives Transformation of <i>Tet2</i> deficient Hematopoietic Stem and Progenitor Cells. Blood, 2020, 136, 40-40.	0.6	54
25	Methylome Profiling Reveals Distinct Alterations in Phenotypic and Mutational Subgroups of Myeloproliferative Neoplasms. Cancer Research, 2013, 73, 1076-1085.	0.4	50
26	Thrombopoietin receptor–independent stimulation of hematopoietic stem cells by eltrombopag. Science Translational Medicine, 2018, 10, .	5.8	48
27	Apoptosis induced by JAK2 inhibition is mediated by Bim and enhanced by the BH3 mimetic ABT-737 in JAK2 mutant human erythroid cells. Blood, 2010, 115, 2901-2909.	0.6	46
28	Thrombocytopenia in MDS: epidemiology, mechanisms, clinical consequences and novel therapeutic strategies. Leukemia, 2016, 30, 536-544.	3.3	43
29	Germline Deletion of <i>lgh</i> 3′ Regulatory Region Elements hs 5, 6, 7 (hs5–7) Affects B Cell-Specific Regulation, Rearrangement, and Insulation of the <i>lgh</i> Locus. Journal of Immunology, 2012, 188, 2556-2566.	0.4	42
30	A Large Gene Network in Immature Erythroid Cells Is Controlled by the Myeloid and B Cell Transcriptional Regulator PU.1. PLoS Genetics, 2011, 7, e1001392.	1.5	40
31	H2.0-like Homeobox Regulates Early Hematopoiesis and Promotes Acute Myeloid Leukemia. Cancer Cell, 2012, 22, 194-208.	7.7	39
32	Stem cell origin of myelodysplastic syndromes. Oncogene, 2014, 33, 5139-5150.	2.6	38
33	HSC commitment–associated epigenetic signature is prognostic in acute myeloid leukemia. Journal of Clinical Investigation, 2014, 124, 1158-1167.	3.9	38
34	Multi-parameter fluorescence-activated cell sorting and analysis of stem and progenitor cells in myeloid malignancies. Best Practice and Research in Clinical Haematology, 2010, 23, 391-401.	0.7	36
35	Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa). Invertebrate Neuroscience, 2010, 10, 77-91.	1.8	35
36	JAK2V617F-negative ET patients do not display constitutively active JAK/STAT signaling. Experimental Hematology, 2007, 35, 1695-1703.	0.2	32

#	Article	IF	CITATIONS
37	Mechanisms and therapeutic prospects of thrombopoietin receptor agonists. Seminars in Hematology, 2019, 56, 262-278.	1.8	25
38	<i>Asxl1</i> loss cooperates with oncogenic <i>Nras</i> in mice to reprogram the immune microenvironment and drive leukemic transformation. Blood, 2022, 139, 1066-1079.	0.6	24
39	NFâ€E2 overexpression delays erythroid maturation and increases erythrocyte production. British Journal of Haematology, 2009, 146, 203-217.	1.2	22
40	An organizing region in metamorphosing hydrozoan planula larvae - stimulation of axis formation in both larval and in adult tissue. International Journal of Developmental Biology, 2010, 54, 795-802.	0.3	21
41	High burden of clonal hematopoiesis in first responders exposed to the World Trade Center disaster. Nature Medicine, 2022, 28, 468-471.	15.2	19
42	HIV portends a poor prognosis in myelodysplastic syndromes. Leukemia and Lymphoma, 2019, 60, 3529-3535.	0.6	15
43	The Transcription Factor Nf-E2 Is Overexpressed in Patients with Polycythemia Vera Blood, 2004, 104, 659-659.	0.6	13
44	Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Science Translational Medicine, 2022, 14, eabb7695.	5.8	13
45	Stem cell mutations can be detected in myeloma patients years before onset of secondary leukemias. Blood Advances, 2019, 3, 3962-3967.	2.5	12
46	SF3B1 Mutations Induce Oncogenic IRAK4 Isoforms and Activate Targetable Innate Immune Pathways in MDS and AML. Blood, 2019, 134, 4224-4224.	0.6	12
47	Eltrombopag can overcome the anti-megakaryopoietic effects of lenalidomide without increasing proliferation of the malignant myelodysplastic syndrome/acute myelogenous leukemia clone. Leukemia and Lymphoma, 2014, 55, 2901-2906.	0.6	11
48	PU.1-Dependent Enhancer Inhibition Separates <i>Tet2</i> -Deficient Hematopoiesis from Malignant Transformation. Blood Cancer Discovery, 2022, 3, 444-467.	2.6	10
49	Combinatorial Haplo-Deficient Tumor Suppression in 7q-Deficient Myelodysplastic Syndrome and Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 555-557.	7.7	8
50	A myeloid tumor suppressor role for NOL3. Journal of Experimental Medicine, 2017, 214, 753-771.	4.2	8
51	Targeting of MDS and AML Stem Cells Via Inhibition of STAT3 By Pyrimethamine. Blood, 2014, 124, 3602-3602.	0.6	6
52	Stem cell fate regulation by dynein motor protein Lis1. Nature Genetics, 2014, 46, 217-218.	9.4	5
53	HIV Is Associated with a High Rate of Unexplained Multilineage Cytopenias and Portends a Poor Prognosis in Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). Blood, 2016, 128, 4345-4345.	0.6	4
54	Dual Inhibition of Mdmx and Mdm2 Using an Alpha-Helical P53 Stapled Peptide (ALRN-6924) As a Novel Therapeutic Strategy in Acute Myeloid Leukemia. Blood, 2017, 130, 795-795.	0.6	4

#	Article	IF	CITATIONS
55	Clinical ALK5 Inhibitor, Vactosertib, Reverses TGF \hat{I}^2 -1 Stimulated Smad-2 Driven Ineffective Hematopoiesis in MDS. Blood, 2019, 134, 2990-2990.	0.6	3
56	Lenalidomide and Eltrombopag for Treatment in Low or Intermediate Risk Myelodysplastic Syndrome: Result of a Phase 2 Study Combination Clinical Trial. Blood, 2021, 138, 65-65.	0.6	3
57	Myelodysplastic Syndrome Marrow Stroma Shows Widespread Aberrant Hypermethylation That Is Abrogated By Treatment with Dnmt Inhibitors. Blood, 2014, 124, 4379-4379.	0.6	2
58	Targeting MDS and AML Stem Cells with AZD-9150 Mediated Inhibition of STAT3. Blood, 2016, 128, 4314-4314.	0.6	2
59	1029 - IRON HOMEOSTASIS-REGULATORY PATHWAYS IN HEMATOPOIETIC STEM CELLS. Experimental Hematology, 2019, 76, S37.	0.2	1
60	No keto for AML stem cells!. Blood, 2020, 136, 1219-1221.	0.6	1
61	The thrombopoietin mimetic JNJ-26366821 increases megakaryopoiesis without affecting malignant myeloid proliferation. Leukemia and Lymphoma, 2020, 61, 2453-2465.	0.6	1
62	New Allosteric Inhibitors of Mutant IDH1 in Acute Myeloid Leukemia. Blood, 2015, 126, 787-787.	0.6	1
63	Minimal Reduction of PU.1 Is Sufficient to Induce a Preleukemic State and Promote Development of Acute Myeloid Leukemia. Blood, 2015, 126, 305-305.	0.6	1
64	High Burden of Clonal Hematopoiesis in First Responders Exposed to the World Trade Center Disaster. Blood, 2019, 134, 3720-3720.	0.6	1
65	Cytoplasmic Labile Iron Accumulates in Aging Stem Cells Perturbing a Key Rheostat for Identity Control. Blood, 2021, 138, 3282-3282.	0.6	1
66	SEPHguarding acute myeloid leukemia. Cell Stem Cell, 2022, 29, 350-352.	5.2	1
67	Regulation of hematopoietic stem cell fate by special at-rich sequence binding protein 1. Experimental Hematology, 2014, 42, S66.	0.2	0
68	The PRO-inflammatory cytokine interleukin-1 is a key regulator of hematopoietic Stem cell fate and function. Experimental Hematology, 2016, 44, S49.	0.2	0
69	Leukemic Stem Cells S(p)liced Off. Cell Stem Cell, 2016, 19, 561-563.	5.2	0
70	Dual inhibition of HDMX and HDM2 in acute myeloid leukemia. Experimental Hematology, 2017, 53, S46.	0.2	0
71	Inhibition of the myeloid master regulator PU.1 as a therapeutic strategy in acute myeloid leukemia. Experimental Hematology, 2017, 53, S133.	0.2	0
72	NF-E2 Overexpression Delays Erythroid Differentiation and Increases Erythrocyte Production. Blood, 2007, 110, 1546-1546.	0.6	0

#	Article	IF	CITATIONS
73	A Distal Single Nucleotide Polymorphism Disrupts Development-Dependent Long-Range Transcriptional Regulation of the PU.1 Gene through the Chromatin-Remodeling Protein SATB1 in Acute Myeloid Leukemia Blood, 2007, 110, 3175-3175.	0.6	0
74	Parallel Transcriptional Analysis of Multiple Stem and Progenitor Populations Identifies Novel Commonly Dysregulated and Functionally Relevant Targets in AML. Blood, 2012, 120, 1875-1875.	0.6	O
75	H2.0-Like Homeobox (HLX) Induces Unlimited Clonogenicity, Blocks Differentiation, and Cooperates with FLT3-ITD in the Induction of Acute Myeloid Leukemia. Blood, 2012, 120, 651-651.	0.6	O
76	Molecular and Functional Characterization Of The Novel Protein-Coding Gene Tihl (Translocated in) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
77	H2.0-Like Homeobox (HLX) Causes Pre-Leukemic Myeloid Expansion and Initiates AML In Cooperation With FLT3-ITD. Blood, 2013, 122, 4201-4201.	0.6	0
78	Interleukin-1 Drives Precocious Myeloid Differentiation of Hematopoietic Stem Cells at the Expense of Self-Renewal. Blood, 2015, 126, 778-778.	0.6	0
79	Examination of Phosphoprotein Targets in Timed Samples from Patients with RAS-Mutated AML during Concurrent Treatment with Alpelisib and Binimetinib on the Phase Ib Clinical Trial CMEK162X2109. Blood, 2016, 128, 2749-2749.	0.6	0
80	Direct Pharmacological Inhibition of the Transcription Factor PU.1 in Acute Myeloid Leukemia. Blood, 2017, 130, 858-858.	0.6	0
81	Therapeutic Targeting of the Ubiquitin Conjugating Enzyme UBE2N in Myeloid Malignancies. Blood, 2018, 132, 4050-4050.	0.6	0
82	A novel thrombopoietin mimetic RWJ-800088 increases megakaryopoiesis without causing malignant proliferation in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) Journal of Clinical Oncology, 2019, 37, e18527-e18527.	0.8	0
83	Chaperone-Mediated Autophagy Ensures Hematopoietic Stem Cell Maintenance. Blood, 2019, 134, 272-272.	0.6	0
84	Azacytidine Inhibits Megakaryopoiesis Via the Induction of Immunogenic RNA Species and Activation of Type-I Interferon Signaling. Blood, 2019, 134, 1280-1280.	0.6	0
85	To Degrade or Not to Degrade DNMT3A. Cancer Discovery, 2022, 12, 23-25.	7.7	0
86	Fighting AML with its own weapons. Blood, 2022, 139, 807-809.	0.6	0
87	Effects of eltrombopag on mesenchymal stem cells in immune thrombocytopenia purpura. British Journal of Haematology, 2022, , .	1.2	0