
Fuzhong Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6957402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Sodiumâ€Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice. Journal of the American Heart Association, 2021, 10, e019995.	1.6	39
2	Redox-Resistant SERCA [Sarco(endo)plasmic Reticulum Calcium ATPase] Attenuates Oxidant-Stimulated Mitochondrial Calcium and Apoptosis in Cardiac Myocytes and Pressure Overload–Induced Myocardial Failure in Mice. Circulation, 2020, 142, 2459-2469.	1.6	19
3	Differential Effects of Sacubitril/Valsartan on Diastolic Function in Mice With Obesity-Related Metabolic Heart Disease. JACC Basic To Translational Science, 2020, 5, 916-927.	1.9	17
4	Energetic Dysfunction Is Mediated by Mitochondrial Reactive Oxygen Species and Precedes Structural Remodeling in Metabolic Heart Disease. Antioxidants and Redox Signaling, 2019, 31, 539-549.	2.5	20
5	Myocardial Redox Hormesis Protects the Heart of Female Mice in Sepsis. Shock, 2019, 52, 52-60.	1.0	11
6	Decreased ATP production and myocardial contractile reserve in metabolic heart disease. Journal of Molecular and Cellular Cardiology, 2018, 116, 106-114.	0.9	70
7	Short-term caloric restriction in db/db mice improves myocardial function and increases high molecular weight (HMW) adiponectin. IJC Metabolic & Endocrine, 2016, 13, 28-34.	0.5	8
8	Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Dietâ€Induced Metabolic Heart Disease. Journal of the American Heart Association, 2016, 5, .	1.6	85
9	Partial Liver Kinase B1 (LKB1) Deficiency Promotes Diastolic Dysfunction, De Novo Systolic Dysfunction, Apoptosis, and Mitochondrial Dysfunction With Dietary Metabolic Challenge. Journal of the American Heart Association, 2016, 5, .	1.6	5
10	Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. Journal of Molecular and Cellular Cardiology, 2015, 79, 275-283.	0.9	52
11	Cytosolic H ₂ O ₂ mediates hypertrophy, apoptosis, and decreased SERCA activity in mice with chronic hemodynamic overload. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1453-H1463.	1.5	51
12	Regulation of SERCA Via Oxidative Modifications: Implications for the Pathophysiology of Diastolic Dysfunction in the Aging Heart. , 2014, , 449-456.		0
13	Hydrogen Peroxide–Mediated SERCA Cysteine 674 Oxidation Contributes to Impaired Cardiac Myocyte Relaxation in Senescent Mouse Heart. Journal of the American Heart Association, 2013, 2, e000184.	1.6	91
14	The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice. Circulation, 2012, 125, 1757-1764.	1.6	103
15	Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redoxâ€methylation balance. Molecular Nutrition and Food Research, 2012, 56, 1812-1824.	1.5	59
16	Mitochondrial Transporter ATP Binding Cassette Mitochondrial Erythroid Is a Novel Gene Required for Cardiac Recovery After Ischemia/Reperfusion. Circulation, 2011, 124, 806-813.	1.6	61
17	Adiponectin Deficiency, Diastolic Dysfunction, and Diastolic Heart Failure. Endocrinology, 2010, 151, 322-331.	1.4	80
18	Short Communication: Oxidative Posttranslational Modifications Mediate Decreased SERCA Activity and Myocyte Dysfunction in Gl±q-Overexpressing Mice. Circulation Research, 2010, 107, 228-232.	2.0	83

Fuzhong Qin

#	Article	IF	CITATIONS
19	Cardiac-Specific Overexpression of Catalase Identifies Hydrogen Peroxide-Dependent and -Independent Phases of Myocardial Remodeling and Prevents the Progression to Overt Heart Failure in Gαq-Overexpressing Transgenic Mice. Circulation: Heart Failure, 2010, 3, 306-313.	1.6	66
20	Enhanced exercise capacity in mice with severe heart failure treated with an allosteric effector of hemoglobin, <i>myo</i> -inositol trispyrophosphate. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1926-1929.	3.3	47
21	Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radical Biology and Medicine, 2007, 43, 271-281.	1.3	118
22	NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: Effects of apocynin. Free Radical Biology and Medicine, 2006, 40, 236-246.	1.3	91
23	Vitamins C and E attenuate apoptosis, Î ² -adrenergic receptor desensitization, and sarcoplasmic reticular Ca2+ ATPase downregulation after myocardial infarction. Free Radical Biology and Medicine, 2006, 40, 1827-1842.	1.3	51
24	Norepinephrine induces endoplasmic reticulum stress and downregulation of norepinephrine transporter density in PC12 cells via oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2381-H2389.	1.5	37
25	Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 499-513.	1.8	40
26	Extracellular norepinephrine reduces neuronal uptake of norepinephrine by oxidative stress in PC12 cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H29-H39.	1.5	29
27	Importance of antioxidant and antiapoptotic effects of β-receptor blockers in heart failure therapy. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1003-H1012.	1.5	64
28	Selegiline attenuates cardiac oxidative stress and apoptosis in heart failure: association with improvement of cardiac function. European Journal of Pharmacology, 2003, 461, 149-158.	1.7	36
29	Antioxidants attenuate myocyte apoptosis and improve cardiac function in CHF: association with changes in MAPK pathways. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H822-H832.	1.5	86
30	Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H363-H371.	1.5	69
31	Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. Journal of the American College of Cardiology, 2001, 38, 1734-1740.	1.2	88
32	Alterations by Norepinephrine of Cardiac Sympathetic Nerve Terminal Function and Myocardial Î ² -Adrenergic Receptor Sensitivity in the Ferret. Circulation, 2000, 102, 96-103.	1.6	73