Tomohiro Higashino

List of Publications by Citations

Source: https://exaly.com/author-pdf/6956221/tomohiro-higashino-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

72 2,377 23 47 g-index

83 2,655 6.5 Sext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
72	Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. <i>Dalton Transactions</i> , 2015 , 44, 448-63	4.3	472
71	tert-Butoxide-mediated arylation of benzene with aryl halides in the presence of a catalytic 1,10-phenanthroline derivative. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15537-9	16.4	419
70	Renaissance of Fused Porphyrins: Substituted Methylene-Bridged Thiophene-Fused Strategy for High-Performance Dye-Sensitized Solar Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9910-	- 1 6 1 9	125
69	MBius antiaromatic bisphosphorus complexes of [30]hexaphyrins. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4950-4	16.4	105
68	Tropolone as a High-Performance Robust Anchoring Group for Dye-Sensitized Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9052-6	16.4	91
67	Remarkable Dependence of the Final Charge Separation Efficiency on the Donor-Acceptor Interaction in Photoinduced Electron Transfer. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 629	- 3 3.4	79
66	Photoconductivity in Metal-Organic Framework (MOF) Thin Films. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9590-9595	16.4	68
65	A new class of epitaxial porphyrin metal®rganic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12739-12747	13	64
64	Effects of Bulky Substituents of Push-Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	50
63	MBius Antiaromatic Bisphosphorus Complexes of [30]Hexaphyrins. <i>Angewandte Chemie</i> , 2010 , 122, 5070-5074	3.6	50
62	Regioisomer effects of [70]fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. <i>Chemical Science</i> , 2017 , 8, 181-188	9.4	45
61	A MBius antiaromatic complex as a kinetically controlled product in phosphorus insertion to a [32]heptaphyrin. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 13105-8	16.4	40
60	Diprotonated [28]hexaphyrins(1.1.1.1.1): triangular antiaromatic macrocycles. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3427-31	16.4	36
59	A single cis-2 regioisomer of ethylene-tethered indene dimer-fullerene adduct as an electron-acceptor in polymer solar cells. <i>Chemical Communications</i> , 2015 , 51, 8233-6	5.8	33
58	Phosphorus complexes of a triply-fused [24]pentaphyrin. <i>Chemical Science</i> , 2012 , 3, 103-107	9.4	33
57	Phosphorus complexes of the first expanded isophlorins. <i>Chemistry - A European Journal</i> , 2010 , 16, 55-9	4.8	33
56	Tropolone as a High-Performance Robust Anchoring Group for Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2015 , 127, 9180-9184	3.6	31

55	Synthesis and Isolation of cis-2 Regiospecific Ethylene-Tethered Indene Dimer-[70]Fullerene Adduct for Polymer Solar Cell Applications. <i>ACS Applied Materials & District Adductions and Section 2015</i> , 7, 16676-85	9.5	30	
54	A Hydroxamic Acid Anchoring Group for Durable Dye-Sensitized Solar Cells Incorporating a Cobalt Redox Shuttle. <i>ChemSusChem</i> , 2017 , 10, 3347-3351	8.3	29	
53	Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells. <i>Inorganic Chemistry</i> , 2020 , 59, 452-459	5.1	27	
52	Singly N-fused MBius aromatic [28]hexaphyrins(1.1.1.1.1). Journal of Organic Chemistry, 2010, 75, 795	8 ₂ 6 <u>1</u>	26	
51	Covalently linked 5,15-diazaporphyrin dimers: promising scaffolds for a highly conjugated azaporphyrin Bystem. <i>Chemistry - A European Journal</i> , 2014 , 20, 3342-9	4.8	25	
50	Combined Experimental and Theoretical Investigations on Optical Activities of MBius Aromatic and MBius Antiaromatic Hexaphyrin Phosphorus Complexes. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 4241-8	2.8	24	
49	Peripheral arylation of subporphyrazines. Chemistry - A European Journal, 2013, 19, 10353-9	4.8	23	
48	2,3,17,18-Tetraethylsulfanyl [30]hexaphyrin(1.1.1.1.1) as the first aromatic isophlorin-type free-base. <i>Chemical Science</i> , 2013 , 4, 1087	9.4	22	
47	Remarkable Dependence of the Final Charge Separation Efficiency on the Donor Acceptor Interaction in Photoinduced Electron Transfer. <i>Angewandte Chemie</i> , 2016 , 128, 639-643	3.6	21	
46	A MBius Antiaromatic Complex as a Kinetically Controlled Product in Phosphorus Insertion to a [32]Heptaphyrin. <i>Angewandte Chemie</i> , 2012 , 124, 13282-13285	3.6	20	
45	Photovoltaic Properties and Long-Term Durability of Porphyrin-Sensitized Solar Cells with Silicon-Based Anchoring Groups. <i>ACS Omega</i> , 2017 , 2, 6958-6967	3.9	19	
44	2,3,17,18-Tetrahalohexaphyrins and the first phlorin-type hexaphyrins. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 1994-2002	4.5	19	
43	A MBius aromatic [28]hexaphyrin bearing a diethylamine group: a rigid but smooth conjugation circuit. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5456-9	16.4	18	
42	Diprotonated [28]Hexaphyrins(1.1.1.1.1): Triangular Antiaromatic Macrocycles. <i>Angewandte Chemie</i> , 2014 , 126, 3495-3499	3.6	18	
41	Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorus-Containing Porphyrin. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12311-5	16.4	18	
40	Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells. <i>ACS Applied Materials & Discrete Solar Cells</i> . 7, 18689-96	9.5	14	
39	Conformation dynamics of non-, singly- and doubly-N-fused [28]hexaphyrins revealed by photophysical studies. <i>Chemical Communications</i> , 2011 , 47, 3960-2	5.8	14	
38	Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and F Magnetic Resonance Imaging. <i>ChemBioChem</i> , 2017 , 18, 951-959	3.8	13	

37	Synthesis of pushpull porphyrin with two electron-donating and two electron-withdrawing groups and its application to dye-sensitized solar cell. <i>Journal of Porphyrins and Phthalocyanines</i> , 2015 , 19, 140-	·148	13
36	Remarkable Dependence of Exciplex Decay Rate on Through-Space Separation Distance between Porphyrin and Chemically Converted Graphene. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 28337-28344	4 ^{3.8}	13
35	Cleaner synthesis and systematical characterization of sustainable poly(isosorbide-co-ethylene terephthalate) by environ-benign and highly active catalysts. <i>Journal of Cleaner Production</i> , 2019 , 206, 483-497	10.3	13
34	Photoleitffligkeit in Dfinfilmen Metall-organischer Gerfite. <i>Angewandte Chemie</i> , 2019 , 131, 9691-9696	3.6	12
33	Enhanced Donor Acceptor Character of a Porphyrin Dye Incorporating Naphthobisthiadiazole for Efficient Near-Infrared Light Absorption. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 2537-2	.5 ² 47	11
32	Thiophene-fused dithiaoctaphyrins: Bystem switching between cross-conjugated and macrocyclic Ehetworks. <i>Chemical Communications</i> , 2017 , 53, 5091-5094	5.8	9
31	Phosphole-Thiophene Hybrid: A Dual Role of Dithieno[3,4-b:3Ţ4Ŧ d]phosphole as Electron Acceptor and Electron Donor. <i>Journal of Organic Chemistry</i> , 2018 , 83, 3397-3402	4.2	9
30	Boron and Phosphorus Complexes of meso-Aryl Expanded Porphyrins. <i>Heterocycles</i> , 2013 , 87, 31	0.8	9
29	Heavy Metal Effects on the Photovoltaic Properties of Metallocorroles in Dye-Sensitized Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12460-12467	6.1	9
28	-1 Isomers of tethered bismethano[70]fullerene as electron acceptors in organic photovoltaics <i>RSC Advances</i> , 2018 , 8, 18316-18326	3.7	9
27	Enantiomerically Separated [[70]PCBM for Organic Photovoltaics. <i>Chemistry Letters</i> , 2017 , 46, 1001-100)3 _{1.7}	8
26	Simple Processing Additive-Driven 20% Efficiency for Inverted Planar Heterojunction Perovskite Solar Cells. <i>ACS Applied Materials & Solar Cells</i> , 12, 18431-18436	9.5	8
25	Calix[5]phyrin for Fluoride Ion Sensing with Visible and Near Infrared Optical Responses. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 2019	4.5	8
24	ABC-ABC-Type Directly meso-meso Linked Porphyrin Dimers. <i>Chemistry - A European Journal</i> , 2019 , 25, 538-547	4.8	8
23	Pluripotent Features of Doubly Thiophene-Fused Benzodiphospholes as Organic Functional Materials. <i>Chemistry - A European Journal</i> , 2019 , 25, 6425-6438	4.8	7
22	Hybrid [5]Radialenes with Bispyrroloheteroles: New Electron-Donating Units. <i>Chemistry - A European Journal</i> , 2015 , 21, 13375-81	4.8	7
21	A MBius Aromatic [28]Hexaphyrin Bearing a Diethylamine Group: A Rigid but Smooth Conjugation Circuit. <i>Angewandte Chemie</i> , 2015 , 127, 5546-5549	3.6	7
20	Exploration on the Combination of Push-Pull Porphyrin Dyes and Copper(I/II) Redox Shuttles toward High-performance Dye-sensitized Solar Cells. <i>Chemistry Letters</i> , 2020 , 49, 936-939	1.7	7

(2019-2017)

Unsymmetrically Substituted Donor-FAcceptor-Type 5,15-Diazaporphyrin Sensitizers: Synthesis, Optical and Photovoltaic Properties. <i>ChemPlusChem</i> , 2017 , 82, 695-704	2.8	6
Reversible Esystem switching of thiophene-fused thiahexaphyrins by solvent and oxidation/reduction. <i>Chemical Science</i> , 2018 , 9, 7528-7539	9.4	6
Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorus-Containing Porphyrin. <i>Angewandte Chemie</i> , 2016 , 128, 12499-12503	3.6	5
A Push P ull Porphyrin Dimer with Multiple Electron-donating Groups for Dye-sensitized Solar Cells: Excellent Light-harvesting in Near-infrared Region. <i>Chemistry Letters</i> , 2016 , 45, 1126-1128	1.7	5
Push P ull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. <i>Chemistry Letters</i> , 2015 , 44, 1395-1397	1.7	5
Effects of meso-diarylamino group of porphyrins on optical and electrochemical properties. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 67-74	1.8	4
Structural Effects on the Incident Photon-to-Current Conversion Efficiency of Zn Porphyrin Dyes on the Low-Index Planes of TiO. <i>ACS Omega</i> , 2017 , 2, 128-135	3.9	3
Thiazolocatechol: Electron-Withdrawing Catechol Anchoring Group for Dye-Sensitized Solar Cells. <i>ChemPhysChem</i> , 2019 , 20, 2689-2695	3.2	3
Unique Role of Heterole-Fused Structures in Aromaticity and Physicochemical Properties of 7,8-Dehydropurpurins. <i>Chemistry - A European Journal</i> , 2020 , 26, 12043-12049	4.8	3
Synthesis of thiophene-fused porphyrin dimers as effective Eextended helical chromophores. <i>Chemical Communications</i> , 2021 , 57, 9606-9609	5.8	3
Emergence of Copper(I/II) Complexes as Third-Generation Redox Shuttles for Dye-Sensitized Solar Cells. <i>ACS Energy Letters</i> ,1926-1938	20.1	3
Modulation of Frontier Molecular Orbitals on Dithieno[3,4-b:3?,4?-d]phosphole Derivatives by Donor-EAcceptor Interaction. <i>Chemistry Letters</i> , 2020 , 49, 272-275	1.7	2
Thiophene-Fused Naphthodiphospholes: Modulation of the Structural and Electronic Properties of Polycyclic Aromatics by Precise Fusion of Heteroles. <i>ChemPlusChem</i> , 2021 , 86, 130-136	2.8	2
Synthesis of Phosphole-bridged Porphyrin Dimers. <i>Chemistry Letters</i> , 2019 , 48, 257-259	1.7	1
Synthesis of Partially meso-Free 2,3-Di(arylethynyl)porphyrins. <i>Chemistry Letters</i> , 2017 , 46, 976-978	1.7	1
Facile synthesis of an ambient stable pyreno[4,5-]pyrrole monoanion and pyreno[4,5-:9,10-1]dipyrrole dianion: from serendipity to design <i>Chemical Science</i> , 2022 , 13, 1594-1599	9.4	О
Truxenone Triimide: Two-Dimensional Molecular Arrangements of Triangular Molecules for Air Stable n-Type Semiconductors. <i>Advanced Electronic Materials</i> ,2101390	6.4	0
ABCABC-Type Directly mesofineso Linked Porphyrin Dimers. <i>Chemistry - A European Journal</i> , 2019 , 25, 389-389	4.8	
	Optical and Photovoltaic Properties. ChemPlusChem, 2017, 82, 695-704 Reversible Esystem switching of thiophene-fused thiahexaphyrins by solvent and oxidation/reduction. Chemical Science, 2018, 9, 7528-7539 Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorus-Containing Porphyrin. Angewandte Chemie, 2016, 128, 12499-12503 A PushBull Porphyrin Dimer with Multiple Electron-donating Groups for Dye-sensitized Solar Cells: Excellent Light-harvesting in Near-infrared Region. Chemistry Letters, 2016, 45, 1126-1128 PushBull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chemistry Letters, 2015, 44, 1395-1397 Effects of meso-diarylamino group of porphyrins on optical and electrochemical properties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 67-74 Structural Effects on the Incident Photon-to-Current Conversion Efficiency of Zn Porphyrin Dyes on the Low-Index Planes of TiO. ACS Omega, 2017, 2, 128-135 Thiazolocatechol: Electron-Withdrawing Catechol Anchoring Group for Dye-Sensitized Solar Cells. ChemPhysChem, 2019, 20, 2689-2695 Unique Role of Heterole-Fused Structures in Aromaticity and Physicochemical Properties of 7,8-Dehydropurpurins. Chemistry - A European Journal, 2020, 26, 12043-12049 Synthesis of thiophene-fused porphyrin dimers as effective Eextended helical chromophores. Chemical Communications, 2021, 57, 9606-9609 Emergence of Copper(I/II) Complexes as Third-Generation Redox Shuttles for Dye-Sensitized Solar Cells. ACS Energy Letters, 1926-1938 Modulation of Frontier Molecular Orbitals on Dithieno(3,4-b-37,42-d]phosphole Derivatives by Donor-Bacceptor Interaction. Chemistry Letters, 2020, 49, 272-275 Thiophene-Fused Naphthodiphospholes: Modulation of the Structural and Electronic Properties of Polycyclic Aromatics by Precise Fusion of Heteroles. Chemistry Letters, 2011, 48, 257-259 Synthesis of Partially meso-Free 2,3-Di(arylethynyl)porphyrins. Chemistry Letters, 2017, 46, 976-978 Facile synthesis of an ambient stable pyreno[4,5-]pyrrole monoan	ABCABC-Type Directly mesorbesis (ChemPlusChem, 2017, 82, 695-704) 2.8. Reversible Bystem switching of thiophene-fused thiahexaphyrins by solvent and oxidation/reduction. Chemical Science, 2018, 9, 7528-7539 9.4. Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorus-Containing Porphyrin. Angewandte Chemie, 2016, 128, 12499-12503 A PushBull Porphyrin Dimer with Multiple Electron-donating Groups for Dye-sensitized Solar Cells: Excellent Light-harvesting in Near-infrared Region. Chemistry Letters, 2016, 45, 1126-1128 PushBull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chemistry Letters, 2015, 44, 1395-1397 Effects of meso-diarylamino group of porphyrins on optical and electrochemical properties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 67-74 Structural Effects on the Incident Photon-to-Current Conversion Efficiency of Zn Porphyrin Dyes on the Low-Index Planes of TiO. ACS Omega, 2017, 2, 128-135 Thiazolocatechol: Electron-Withdrawing Catechol Anchoring Group for Dye-Sensitized Solar Cells. ChemiPhysChem, 2019, 20, 2689-2695 Unique Role of Heterole-Fused Structures in Aromaticity and Physicochemical Properties of 7,8-Dehydropurpurins. Chemistry - A European Journal, 2020, 26, 12043-12049 Synthesis of thiophene-fused porphyrin dimers as effective Extended helical chromophores. Chemical Communications, 2021, 57, 966-9609 Emergence of Copper(I/II) Complexes as Third-Generation Redox Shuttles for Dye-Sensitized Solar Cells. ACS Energy Letters, 1926-1938 Modulation of Frontier Molecular Orbitals on Dithieno[3,4-b:33,47-d]phosphole Derivatives by Donor-Pacceptor Interaction. Chemistry Letters, 2020, 49, 272-275 Thiophene-Fused Naphthodiphospholes: Modulation of the Structural and Electronic Properties of Polycyclic Aromatics by Precise Fusion of Heteroles. Chemistry Letters, 2019, 48, 257-259 Synthesis of Partially meso-Free 2,3-Di(arylethynyl)porphyrins. Chemistry Letters, 2017, 46, 976-978 1,7 Synthesis of Partially meso-Free 2,3-Di(arylethynyl)

Donor-EAcceptor Type Porphyrin-Fullerene Dyad with Acetylene Bridge for p-Type Dye-sensitized Solar Cell. *Chemistry Letters*, **2022**, 51, 260-263

1.7