LucÃ-lia Saraiva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6956054/publications.pdf

Version: 2024-02-01

293460 425179 1,778 106 24 34 citations g-index h-index papers 108 108 108 2613 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Letters, 2022, 525, 131-145.	3.2	10
2	Mutant p53 reactivator SLMP53-2 hinders ultraviolet B radiation-induced skin carcinogenesis. Pharmacological Research, 2022, 175, 106026.	3.1	3
3	Enhanced Anticancer Activity of Hymenocardia acida Stem Bark Extract Loaded into PLGA Nanoparticles. Pharmaceuticals, 2022, 15, 535.	1.7	5
4	Folic acid-mesoporous silicon nanoparticles enhance the anticancer activity of the p73-activating small molecule LEM2. International Journal of Pharmaceutics, 2022, 624, 121959.	2.6	0
5	Potency and Selectivity Optimization of Tryptophanolâ€Derived Oxazoloisoindolinones: Novel p53 Activators in Human Colorectal Cancer. ChemMedChem, 2021, 16, 250-258.	1.6	6
6	Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma. Journal of Drug Delivery Science and Technology, 2021, 61, 102226.	1.4	15
7	Mechanism of Antifungal Activity by 5-Aminoimidazole-4-Carbohydrazonamide Derivatives against Candida albicans and Candida krusei. Antibiotics, 2021, 10, 183.	1.5	15
8	Semi-Synthesis of Small Molecules of Aminocarbazoles: Tumor Growth Inhibition and Potential Impact on p53. Molecules, 2021, 26, 1637.	1.7	4
9	A selective p53 activator and anticancer agent to improve colorectal cancer therapy. Cell Reports, 2021, 35, 108982.	2.9	20
10	Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers, 2021, 13, 1648.	1.7	11
11	Preliminary Biological Activity Screening of Plectranthus spp. Extracts for the Search of Anticancer Lead Molecules. Pharmaceuticals, 2021, 14, 402.	1.7	11
12	Chalcones as Promising Antitumor Agents by Targeting the p53 Pathway: An Overview and New Insights in Drug-Likeness. Molecules, 2021, 26, 3737.	1.7	17
13	BBIT20 inhibits homologous DNA repair with disruption of the BRCA1–BARD1 interaction in breast and ovarian cancer. British Journal of Pharmacology, 2021, 178, 3627-3647.	2.7	13
14	Structural and Drug Targeting Insights on Mutant p53. Cancers, 2021, 13, 3344.	1.7	38
15	Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers, 2021, 13, 3438.	1.7	11
16	A Diarylpentanoid with Potential Activation of the p53 Pathway: Combination of <i>in silico</i> Screening Studies, Synthesis, and Biological Activity Evaluation. ChemMedChem, 2021, 16, 2969-2981.	1.6	7
17	Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation. Molecules, 2021, 26, 4712.	1.7	1
18	Self-Assembly Nanoparticles of Natural Bioactive Abietane Diterpenes. International Journal of Molecular Sciences, 2021, 22, 10210.	1.8	5

#	Article	IF	CITATIONS
19	Abstract PO30: Chemoprevention by the mutant p53 reactivator SLMP53-2 on ultraviolet radiation-induced skin cancer. , 2021, , .		O
20	SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129440.	1.1	13
21	BRCA1/P53: Two strengths in cancer chemoprevention. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188339.	3.3	17
22	p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacological Research, 2020, 162, 105245.	3.1	15
23	P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188438.	3.3	29
24	Boronic Acids and Their Derivatives in Medicinal Chemistry: Synthesis and Biological Applications. Molecules, 2020, 25, 4323.	1.7	75
25	Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones. International Journal of Molecular Sciences, 2020, 21, 3671.	1.8	7
26	Diarylpentanoids with antitumor activity: A critical review of structure-activity relationship studies. European Journal of Medicinal Chemistry, 2020, 192, 112177.	2.6	26
27	SLMP53-1 Inhibits Tumor Cell Growth through Regulation of Glucose Metabolism and Angiogenesis in a P53-Dependent Manner. International Journal of Molecular Sciences, 2020, 21, 596.	1.8	17
28	Norhierridin B, a New Hierridin B-Based Hydroquinone with Improved Antiproliferative Activity. Molecules, 2020, 25, 1578.	1.7	5
29	Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Current Medicinal Chemistry, 2020, 26, 7323-7336.	1.2	13
30	SLMP53-2 Restores Wild-Type-Like Function to Mutant p53 through Hsp70: Promising Activity in Hepatocellular Carcinoma. Cancers, 2019, 11, 1151.	1.7	21
31	Yeast As a Chassis for Developing Functional Assays to Study Human P53. Journal of Visualized Experiments, 2019, , .	0.2	9
32	Naphthoylhydrazones: coordination to metal ions and biological screening. New Journal of Chemistry, 2019, 43, 17801-17818.	1.4	13
33	Parvifloron D from Plectranthus strigosus: Cytotoxicity Screening of Plectranthus spp. Extracts. Biomolecules, 2019, 9, 616.	1.8	8
34	Strategies to Discover p53 Activators and a p73 Activator for Neuroblastoma. Proceedings (mdpi), 2019, 22, .	0.2	0
35	Targeting leucine-rich repeat kinase 2 (LRRK2) for the treatment of Parkinson's disease. Future Medicinal Chemistry, 2019, 11, 1953-1977.	1.1	16
36	New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma. Cancer Letters, 2019, 446, 90-102.	3.2	36

#	Article	IF	CITATIONS
37	A simple linearization method unveils hidden enzymatic assay interferences. Biophysical Chemistry, 2019, 252, 106193.	1.5	6
38	Synthesis, Biological Evaluation, and In Silico Studies of Novel Aminated Xanthones as Potential p53-Activating Agents. Molecules, 2019, 24, 1975.	1.7	24
39	Comparison Study of Different Extracts of Plectranthus madagascariensis, P. neochilus and the Rare P. porcatus (Lamiaceae): Chemical Characterization, Antioxidant, Antimicrobial and Cytotoxic Activities. Biomolecules, 2019, 9, 179.	1.8	15
40	Cytotoxic Activity of Royleanone Diterpenes from <i>Plectranthus madagascariensis</i> Benth. ACS Omega, 2019, 4, 8094-8103.	1.6	24
41	New Alkoxy Flavone Derivatives Targeting Caspases: Synthesis and Antitumor Activity Evaluation. Molecules, 2019, 24, 129.	1.7	15
42	Design and synthesis of new inhibitors of p53–MDM2 interaction with a chalcone scaffold. Arabian Journal of Chemistry, 2019, 12, 4150-4161.	2.3	21
43	Discovery of a small-molecule protein kinase Cl´-selective activator with promising application in colon cancer therapy. Cell Death and Disease, 2018, 9, 23.	2.7	25
44	p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacological Research, 2018, 131, 75-86.	3.1	83
45	Biological Effects of Saponin Fractions from <i>Astragalus verrucosus</i> i> in Tumor and Non-tumor Human cells. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	4
46	The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. International Journal of Molecular Sciences, 2018, 19, 1184.	1.8	23
47	Improving anticancer activity towards colon cancer cells with a new p53â€activating agent. British Journal of Pharmacology, 2018, 175, 3947-3962.	2.7	21
48	Targeting the MDM2-p53 protein-protein interaction with prenylchalcones: Synthesis of a small library and evaluation of potential antitumor activity. European Journal of Medicinal Chemistry, 2018, 156, 711-721.	2.6	22
49	The crystal structure of the R280K mutant of human p53 explains the loss of DNA binding. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e192-e192.	0.0	0
50	DIMP53-1: a novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties. Molecular Oncology, 2017, 11, 612-627.	2.1	33
51	Natural Products as Lead Protein Kinase C Modulators for Cancer Therapy. Studies in Natural Products Chemistry, 2016, , 45-79.	0.8	12
52	Medicinal Chemistry Strategies to Disrupt the p53–MDM2/MDMX Interaction. Medicinal Research Reviews, 2016, 36, 789-844.	5.0	71
53	Hydrogen peroxide-induced secondary necrosis in conidia of <i>Aspergillus fumigatus</i> Canadian Journal of Microbiology, 2016, 62, 95-101.	0.8	4
54	p53 family interactions and yeast: together in anticancer therapy. Drug Discovery Today, 2016, 21, 616-624.	3.2	11

#	Article	IF	CITATIONS
55	Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule. Oncotarget, 2016, 7, 4326-4343.	0.8	37
56	A yeast model of the Parkinson \times^3 s disease-associated protein Parkin. Experimental Cell Research, 2015, 333, 73-79.	1.2	22
57	A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins. Pharmacological Research, 2015, 95-96, 42-52.	3.1	37
58	Enhanced cytotoxicity of prenylated chalcone against tumour cells via disruption of the p53–MDM2 interaction. Life Sciences, 2015, 142, 60-65.	2.0	28
59	Chronological aging in conidia of pathogenic Aspergillus : Comparison between species. Journal of Microbiological Methods, 2015, 118, 57-63.	0.7	9
60	Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules. Experimental Cell Research, 2015, 330, 164-177.	1.2	11
61	Oxazoloisoindolinones with in vitro antitumor activity selectively activate a p53-pathway through potential inhibition of the p53–MDM2 interaction. European Journal of Pharmaceutical Sciences, 2015, 66, 138-147.	1.9	41
62	Potential small-molecule activators of caspase-7 identified using yeast-based caspase-3 and -7 screening assays. European Journal of Pharmaceutical Sciences, 2014, 54, 8-16.	1.9	9
63	Microglia P2Y6 receptors mediate nitric oxide release and astrocyte apoptosis. Journal of Neuroinflammation, 2014, 11, 141.	3.1	44
64	LRRK2, but not pathogenic mutants, protects against H2O2 stress depending on mitochondrial function and endocytosis in a yeast model. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2025-2031.	1.1	29
65	Using yeast to uncover the regulation of protein kinase \hat{Cl} by ceramide. FEMS Yeast Research, 2013, 13, 700-705.	1.1	3
66	Interference of aging media on the assessment of yeast chronological life span by propidium iodide staining. Folia Microbiologica, 2013, 58, 81-84.	1.1	7
67	α-Mangostin and Gambogic Acid as Potential Inhibitors of the p53–MDM2 Interaction Revealed by a Yeast Approach. Journal of Natural Products, 2013, 76, 774-778.	1.5	36
68	Discovery of a new small-molecule inhibitor of p53–MDM2 interaction using a yeast-based approach. Biochemical Pharmacology, 2013, 85, 1234-1245.	2.0	55
69	Novel simplified yeast-based assays of regulators of p53-MDMX interaction and p53 transcriptional activity. FEBS Journal, 2013, 280, 6498-6507.	2.2	16
70	SNaPaer: A Practical Single Nucleotide Polymorphism Multiplex Assay for Genotyping of Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e66083.	1,1	11
71	Contribution of Yeast and Plant Research for Improving Human Health. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	0
72	Contribution of Yeast Models to Neurodegeneration Research. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-12.	3.0	39

#	Article	IF	CITATIONS
73	New Therapeutic Strategies for Cancer and Neurodegeneration Emerging from Yeast Cell-based Systems. Current Pharmaceutical Design, 2012, 18, 4223-4235.	0.9	24
74	Production and purification of the VP1 capsid protein of a novel canine norovirus using the Saccharomyces cerevisiae expression system. Journal of Microbiological Methods, 2012, 91, 358-360.	0.7	2
75	953 Discovery of a New Inhibitor of P53/MDM2 Interaction Using a Yeast Target-based Screening Strategy. European Journal of Cancer, 2012, 48, S229.	1.3	0
76	New insights into cancerâ€related proteins provided by the yeast model. FEBS Journal, 2012, 279, 697-712.	2.2	42
77	Endocytosis inhibition during H2O2-induced apoptosis in yeast. FEMS Yeast Research, 2012, 12, 755-760.	1.1	12
78	Yeast as a Powerful Model System for the Study of Apoptosis Regulation by Protein Kinase C Isoforms. Current Pharmaceutical Design, 2012, 18, 2492-2500.	0.9	7
79	The Importance of Humanized Yeast to Better Understand the Role of Bcl-2 Family in Apoptosis: Finding of Novel Therapeutic Opportunities. Current Pharmaceutical Design, 2011, 17, 246-255.	0.9	22
80	Modulation of Bax mitochondrial insertion and induced cell death in yeast by mammalian protein kinase $\hat{\text{Cl}}_{\pm}$. Experimental Cell Research, 2011, 317, 781-790.	1.2	23
81	Distinct regulation of p53-mediated apoptosis by protein kinase \widehat{Cl}_{\pm} , \widehat{l}'_{τ} , \widehat{l}_{μ} and \widehat{l}_{η} : Evidence in yeast for transcription-dependent and -independent p53 apoptotic mechanisms. Experimental Cell Research, 2011, 317, 1147-1158.	1.2	20
82	Aspartic vinyl sulfones: Inhibitors of a caspase-3-dependent pathway. European Journal of Medicinal Chemistry, 2011, 46, 2141-2146.	2.6	25
83	Selective activation of protein kinase C-δ and -É> by 6,11,12,14-tetrahydroxy-abieta-5,8,11,13-tetraene-7-one (coleon U). Biochemical Pharmacology, 2009, 78, 449-459.	2.0	15
84	Differential regulation of p53 function by protein kinase C isoforms revealed by a yeast cell system. FEBS Letters, 2009, 583, 3582-3588.	1.3	17
85	Specific modulation of apoptosis and Bcl-xL phosphorylation in yeast by distinct mammalian protein kinase C isoforms. Journal of Cell Science, 2006, 119, 3171-3181.	1.2	41
86	Characterization of phorbol esters activity on individual mammalian protein kinase C isoforms, using the yeast phenotypic assay. European Journal of Pharmacology, 2004, 491, 101-110.	1.7	27
87	Inhibition of protein kinase C by synthetic xanthone derivatives. Bioorganic and Medicinal Chemistry, 2003, 11, 1215-1225.	1.4	34
88	Isoform-selectivity of PKC Inhibitors Acting at the Regulatory and Catalytic Domain of Mammalian PKC-α, -βl, -δ, -η and -ζ. Journal of Enzyme Inhibition and Medicinal Chemistry, 2003, 18, 475-483.	2.5	21
89	Inhibition of α, βI, δ, η and ζ Protein Kinase C Isoforms by Xanthonolignoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2003, 18, 357-370.	2.5	18
90	Differential Activation of Protein Kinase C Isoforms by Euxanthone, Revealed by anIn VivoYeast Phenotypic Assay. Planta Medica, 2002, 68, 1039-1041.	0.7	9

#	Article	IF	CITATIONS
91	Synthesis and in vivo modulatory activity of protein kinase C of xanthone derivatives. Bioorganic and Medicinal Chemistry, 2002, 10, 3219-3227.	1.4	37
92	Differential Activation by Daphnetoxin and Mezerein of PKC-Isotypes \hat{l}_{\pm} , $\hat{l}^2 I$, \hat{l}' and \hat{l}_{\P} . Planta Medica, 2001, 67, 787-790.	0.7	22
93	Promising caspase modulators with flavonoid scaffold. , 0, , .		О
94	Enantiopure oxazoloisoindolinones: Promising small molecules for p53-based therapy with potential anticancer properties. , 0 , , .		0
95	Design and molecular docking studies of new potential PKC- \hat{l} activators based on royleanone scaffold. , 0, , .		О
96	Improving colon cancer therapy with a new promising small-molecule activator of the p53-pathway through disruption of p53-MDM2/MDMX interactions. , 0, , .		0
97	Cytotoxic activity of coleon diterpenoids from Plectranthus mutabilis c odd., 0,		O
98	Tryptophanol-derived oxazoloisoindolinones: Novel small molecule p53 activators with promising antitumor activity. , 0, , .		0
99	Targeting neuroblastoma with a new inhibitor of the TAp73 interaction with MDM2 and mutant p53.,0,		O
100	Optimizing the oxazoloisoindolinone family: Identification and biological evaluation of a potent and selective indole-based p53 activator in human colorectal cancer. , 0, , .		0
101	Chemical Composition and Biological Activity of Diterpenoids from Plectranthus mutabilis .,0,,.		O
102	SLMP53-1 inhibits tumor cell growth through regulation of glucose metabolism and angiogenesis in a P53-dependent manner. , 0, , .		0
103	Norhierridin B, a new hierridin B-based hydroquinone with improved antiproliferative activity. , 0, , .		О
104	BP-C4: A new diarylpentanoid with potential activation of the p53 pathway., 0,,.		0
105	Chemoprevention of ultraviolet B radiation-induced skin cancer with the mutant p53 reactivator SLMP53-2. , 0, , .		0
106	Inhibition of P-glycoprotein activity to overcome multidrug resistance in cancer with new diterpene royleanones from & amp; lt; em & amp; gt; Plectranthus & amp; lt; / em & amp; gt; spp, 0, , .		0