Wayland W L Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6955334/publications.pdf

Version: 2024-02-01

471509 526287 37 809 17 27 citations g-index h-index papers 47 47 47 825 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Polyunsaturated fatty acids inhibit a pentameric ligand-gated ion channel through one of two binding sites. ELife, 2022, 11 , .	6.0	11
2	Polyunsaturated fatty acids inhibit a pentameric ligandâ€gated ion channel through one of two specific binding sites. FASEB Journal, 2021, 35, .	0.5	0
3	A phase 2 trial of inhaled nitrous oxide for treatment-resistant major depression. Science Translational Medicine, 2021, 13, .	12.4	52
4	Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Frontiers in Physiology, 2021, 12, 798102.	2.8	14
5	Charge Reduction of Membrane Proteins in Native Mass Spectrometry Using Alkali Metal Acetate Salts. Analytical Chemistry, 2020, 92, 6622-6630.	6.5	8
6	Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. ELife, 2020, 9,	6.0	32
7	Multiple neurosteroid and cholesterol binding sites in voltage-dependent anion channel-1 determined by photo-affinity labeling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1269-1279.	2.4	26
8	The molecular determinants of neurosteroid binding in the GABA(A) receptor. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105383.	2.5	14
9	Direct Lipid Binding in a Pentameric Ligand-Gated Ion Channel Assessed by Native Mass Spectrometry. Biophysical Journal, 2019, 116, 42a.	0.5	0
10	Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biology, 2019, 17, e3000157.	5.6	76
11	Common binding sites for cholesterol and neurosteroids on a pentameric ligand-gated ion channel. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 128-136.	2.4	18
12	Direct binding of phosphatidylglycerol at specific sites modulates desensitization of a ligand-gated ion channel. ELife, 2019, 8, .	6.0	34
13	Mapping two neurosteroid-modulatory sites in the prototypic pentameric ligand-gated ion channel GLIC. Journal of Biological Chemistry, 2018, 293, 3013-3027.	3.4	28
14	Cholesterol and Neurosteroids Bind Common Sites but Assume Different Orientations in a Pentameric Ligand Gated Ion Channel. Biophysical Journal, 2018, 114, 197a-198a.	0.5	0
15	Mapping Two Neursteroid Modulatory Sites in GLIC: A Prototypic Pentameric Ligand Gated Ion Channel. Biophysical Journal, 2018, 114, 299a.	0.5	2
16	Mechanically Enhancing Planar Lipid Bilayers with a Minimal Actin Cortex. Langmuir, 2018, 34, 10847-10855.	3.5	7
17	Identification of Neurosteroid Binding Sites on GABAA Receptors using Photolabeling with Mass Spectrometry. Biophysical Journal, 2018, 114, 25a.	0.5	1
18	Click Chemistry Reagent for Identification of Sites of Covalent Ligand Incorporation in Integral Membrane Proteins. Analytical Chemistry, 2017, 89, 2636-2644.	6.5	20

#	Article	IF	Citations
19	Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1. Journal of Biological Chemistry, 2017, 292, 9294-9304.	3.4	54
20	Energetics and Location of Phosphoinositide Binding in Human Kir2.1 Channels. Journal of Biological Chemistry, 2013, 288, 16726-16737.	3.4	34
21	The Molecular Basis of Phosphoinositide Activation of Human Inward Rectifier (Kir2.1) Channels. Biophysical Journal, 2012, 102, 536a.	0.5	O
22	Mechanism for Selectivity-Inactivation Coupling in KcsA Potassium Channels. Biophysical Journal, 2011, 100, 565a.	0.5	2
23	Phospholipid Regulation of Purified and Reconstituted Human Inward Rectifier (Kir) Channels. Biophysical Journal, 2011, 100, 431a.	0.5	0
24	Dual-Mode Phospholipid Regulation of Human Inward Rectifying Potassium Channels. Biophysical Journal, 2011, 100, 620-628.	0.5	69
25	Mechanism for selectivity-inactivation coupling in KcsA potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5272-5277.	7.1	80
26	Polyamine Block of Inwardly Rectifying Potassium Channels. Methods in Molecular Biology, 2011, 720, 113-126.	0.9	7
27	Functional Complementation and Genetic Deletion Studies of KirBac Channels. Journal of Biological Chemistry, 2010, 285, 40754-40761.	3.4	22
28	Direct and Specific Activation of Human Inward Rectifier K+ Channels by Membrane Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2010, 285, 37129-37132.	3.4	71
29	Lipids driving protein structure? Evolutionary adaptations in Kir channels. Channels, 2010, 4, 139-141.	2.8	16
30	The Lipid Dependence of Purified and Reconstituted Kir2.1 and Kir2.2. Biophysical Journal, 2010, 98, 700a.	0.5	0
31	Expression and purification of recombinant human inward rectifier K+ (KCNJ) channels in Saccharomyces cerevisiae. Protein Expression and Purification, 2010, 71, 115-121.	1.3	21
32	The E71A Mutation Alters Selective Ion Permeability in KcsA. Biophysical Journal, 2010, 98, 332a.	0.5	0
33	Expression and Purification of Recombinant Human Inward Rectifier K+ (KCNJ) Channel. Biophysical Journal, 2010, 98, 701a.	0.5	0
34	KirBac1.1: It's an Inward Rectifying Potassium Channel. Journal of General Physiology, 2009, 133, 295-305.	1.9	48
35	KirBac1.1: It's An Inward Rectifying Potassium Channel. Biophysical Journal, 2009, 96, 467a.	0.5	0
36	Random assembly of SUR subunits in K _{ATP} channel complexes. Channels, 2008, 2, 34-38.	2.8	17

#	Article	IF	CITATIONS
37	Numerical Fluorescence Correlation Spectroscopy for the Analysis of Molecular Dynamics under Nonstandard Conditions. Analytical Chemistry, 2007, 79, 4031-4039.	6.5	20