
Bertram L Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6955249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small Hero with Great Powers: Vaccinia Virus E3 Protein and Evasion of the Type I IFN Response. Biomedicines, 2022, 10, 235.	1.4	15
2	Detecting Necroptosis in Virus-Infected Cells. Methods in Molecular Biology, 2021, 2225, 199-216.	0.4	3
3	Optimization of translation enhancing element use to increase protein expression in a vaccinia virus system. Journal of General Virology, 2021, 102, .	1.3	1
4	Vaccinia virus E3 prevents sensing of Z-RNA to block ZBP1-dependent necroptosis. Cell Host and Microbe, 2021, 29, 1266-1276.e5.	5.1	66
5	Convergent Loss of the Necroptosis Pathway in Disparate Mammalian Lineages Shapes Viruses Countermeasures. Frontiers in Immunology, 2021, 12, 747737.	2.2	14
6	Subversion of Programed Cell Death by Poxviruses. Current Topics in Microbiology and Immunology, 2020, , 105-131.	0.7	4
7	Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost. Journal of Virology, 2019, 93, .	1.5	25
8	Replication-Competent NYVAC-KC Yields Improved Immunogenicity to HIV-1 Antigens in Rhesus Macaques Compared to Nonreplicating NYVAC. Journal of Virology, 2019, 93, .	1.5	13
9	Promoting Protein Translation in a Vaccinia Virus System Using Translation Enhancing Elements. FASEB Journal, 2018, 32, 651.11.	0.2	Ο
10	HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates. Journal of Virology, 2017, 91, .	1.5	26
11	A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles. Virology, 2017, 507, 242-256.	1.1	5
12	Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11506-11511.	3.3	121
13	Characterization of a PKR inhibitor from the pathogenic ranavirus, Ambystoma tigrinum virus, using a heterologous vaccinia virus system. Virology, 2017, 511, 290-299.	1.1	6
14	Monkeypox virus induces the synthesis of less dsRNA than vaccinia virus, and is more resistant to the anti-poxvirus drug, IBT, than vaccinia virus. Virology, 2016, 497, 125-135.	1.1	29
15	Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. Journal of Virology, 2016, 90, 4133-4149.	1.5	22
16	Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE, 2016, 11, e0153484.	1.1	20
17	Evasion of the Innate Immune Type I Interferon System by Monkeypox Virus. Journal of Virology, 2015, 89, 10489-10499.	1.5	57
18	Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. Journal of Virology, 2015, 89, 8525-8539.	1.5	35

#	Article	IF	CITATIONS
19	Virological and Immunological Characterization of Novel NYVAC-Based HIV/AIDS Vaccine Candidates Expressing Clade C Trimeric Soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as Virus-Like Particles. Journal of Virology, 2015, 89, 970-988.	1.5	30
20	Synthetic long peptide booster immunization in rhesus macaques primed with replication-competent NYVAC-C-KC induces a balanced CD4/CD8 T-cell and antibody response against the conserved regions of HIV-1. Journal of General Virology, 2015, 96, 1478-1483.	1.3	10
21	A leader sequence capable of enhancing RNA expression and protein synthesis in mammalian cells. Protein Science, 2013, 22, 1392-1398.	3.1	11
22	Use of a Recombinant Vaccinia Virus Expressing Interferon Gamma for Post-Exposure Protection against Vaccinia and Ectromelia Viruses. PLoS ONE, 2013, 8, e77879.	1.1	7
23	The Amino Terminus of the Vaccinia Virus E3 Protein Is Necessary To Inhibit the Interferon Response. Journal of Virology, 2012, 86, 5895-5904.	1.5	37
24	In Vitro Characterization of a Nineteenth-Century Therapy for Smallpox. PLoS ONE, 2012, 7, e32610.	1.1	23
25	The NYCBH vaccinia virus deleted for the innate immune evasion gene, E3L, protects rabbits against lethal challenge by rabbitpox virus. Vaccine, 2011, 29, 7659-7669.	1.7	10
26	The attenuated NYCBH vaccinia virus deleted for the immune evasion gene, E3L, completely protects mice against heterologous challenge with ectromelia virus. Vaccine, 2011, 29, 9691-9696.	1.7	7
27	Attenuated NYCBH vaccinia virus deleted for the E3L gene confers partial protection against lethal monkeypox virus disease in cynomolgus macaques. Vaccine, 2011, 29, 9684-9690.	1.7	20
28	Use of a negative selectable marker for rapid selection of recombinant vaccinia virus. BioTechniques, 2011, 50, 303-309.	0.8	15
29	Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors. PLoS ONE, 2011, 6, e16819.	1.1	42
30	Improved NYVAC-Based Vaccine Vectors. PLoS ONE, 2011, 6, e25674.	1.1	59
31	Innate Immune Evasion Mediated by the Ambystoma tigrinum Virus Eukaryotic Translation Initiation Factor 21± Homologue. Journal of Virology, 2011, 85, 5061-5069.	1.5	39
32	Evidence for Multiple Recent Host Species Shifts among the Ranaviruses (Family <i>Iridoviridae</i>). Journal of Virology, 2010, 84, 2636-2647.	1.5	118
33	Protein Kinase PKR-Dependent Activation of Mitogen-Activated Protein Kinases Occurs through Mitochondrial Adapter IPS-1 and Is Antagonized by Vaccinia Virus E3L. Journal of Virology, 2009, 83, 5718-5725.	1.5	43
34	Vaccinia virus vaccines: Past, present and future. Antiviral Research, 2009, 84, 1-13.	1.9	211
35	Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: Intra-nasal vaccination. Vaccine, 2008, 26, 664-676.	1.7	45
36	Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: Scarification vaccination. Vaccine, 2008, 26, 2860-2872.	1.7	41

Bertram L Jacobs

#	Article	IF	CITATIONS
37	Loss of Protein Kinase PKR Expression in Human HeLa Cells Complements the Vaccinia Virus E3L Deletion Mutant Phenotype by Restoration of Viral Protein Synthesis. Journal of Virology, 2008, 82, 840-848.	1.5	76
38	Inhibition of PKR by RNA and DNA viruses. Virus Research, 2006, 119, 100-110.	1.1	190
39	Suppression of Proinflammatory Signal Transduction and Gene Expression by the DualNucleic Acid Binding Domains of the Vaccinia Virus E3L Proteins. Journal of Virology, 2006, 80, 10083-10095.	1.5	70
40	Viral Countermeasures to the Host Interferon Response: Role of the Vaccinia Virus E3L and K3L Genes. , 2005, , 353-376.		0
41	The N-terminal domain of the vaccinia virus E3L-protein is required for neurovirulence, but not induction of a protective immune response. Virology, 2005, 333, 263-270.	1.1	53
42	Inhibition of PKR by vaccinia virus: role of the N- and C-terminal domains of E3L. Virology, 2004, 324, 419-429.	1.1	92
43	Inhibition of PKR by vaccinia virus: role of the N- and C-terminal domains of E3L. Virology, 2004, 324, 419-419.	1.1	Ο
44	Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America. Virology, 2003, 316, 90-103.	1.1	125
45	The Orf virus E3L homologue is able to complement deletion of the vaccinia virus E3L gene in vitro but not in vivo. Virology, 2003, 314, 305-314.	1.1	22
46	A role for Z-DNA binding in vaccinia virus pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6974-6979.	3.3	202
47	The Role of the PKR-Inhibitory Genes, E3L and K3L, in Determining Vaccinia Virus Host Range. Virology, 2002, 299, 133-141.	1.1	161
48	Vaccinia Virus E3L Interferon Resistance Protein Inhibits the Interferon-Induced Adenosine Deaminase A-to-I Editing Activity. Virology, 2001, 289, 378-387.	1.1	62
49	Both Carboxy- and Amino-Terminal Domains of the Vaccinia Virus Interferon Resistance Gene, E3L, Are Required for Pathogenesis in a Mouse Model. Journal of Virology, 2001, 75, 850-856.	1.5	191
50	Role of the Vaccinia Virus E3L and K3L Gene Products in Rescue of VSV and EMCV from the Effects of IFN-α. Journal of Interferon and Cytokine Research, 1998, 18, 721-729.	0.5	44
51	Characterization of Viral Double-Stranded RNA-Binding Proteins. Methods, 1998, 15, 225-232.	1.9	14
52	Activation of Antiviral Protein Kinase Leads to Immunoglobulin E Class Switching in Human B Cells. Journal of Virology, 1998, 72, 1171-1176.	1.5	48
53	Complementation of Vaccinia Virus Deleted of the E3L Gene by Mutants of E3L. Virology, 1997, 239, 269-276.	1.1	64
54	Complementation of Deletion of the Vaccinia Virus E3L Gene by theEscherichia coliRNase III Gene. Virology, 1997, 227, 77-87.	1.1	28

Bertram L Jacobs

#	Article	IF	CITATIONS
55	When Two Strands Are Better Than One: The Mediators and Modulators of the Cellular Responses to Double-Stranded RNA. Virology, 1996, 219, 339-349.	1.1	546
56	Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes, 1996, 12, 89-94.	0.7	100
57	Site-Directed Mutagenic Analysis of Reovirus σ3 Protein Binding to dsRNA. Virology, 1994, 204, 190-199.	1.1	61
58	Identification of a Conserved Motif That Is Necessary for Binding of the Vaccinia Virus E3L Gene Products to Double-Stranded RNA. Virology, 1993, 194, 537-547.	1.1	150
59	The mouse antiphosphotyrosine immunoreactive kinase, TIK, is indistinguishable from the double-stranded RNAdependent, interferon-induced protein kinase, PKR. Nucleic Acids Research, 1993, 21, 4830-4835.	6.5	22
60	Atomic Force Microscopy Imaging of Double Stranded DNA and RNA. Journal of Biomolecular Structure and Dynamics, 1992, 10, 589-606.	2.0	161
61	Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Research, 1992, 20, 3983-3986.	6.5	92
62	Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded rna-dependent protein kinase. Virology, 1991, 185, 206-216.	1.1	128
63	Histone Proteins Inhibit Activation of the Interferon-Induced Protein Kinase by Binding to Double-Stranded RNA. Journal of Interferon Research, 1988, 8, 821-830.	1.2	12