
Kenneth S Ogueri, Mseng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6955161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stromal Vascular Fraction for Osteoarthritis of the Knee Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2022, 8, 210-224.	1.6	14
2	Osmotic-controlled release oral tablets: technology and functional insights. Trends in Biotechnology, 2022, 40, 606-619.	4.9	10
3	In Vivo Evaluation of the Regenerative Capability of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic- <i>co</i> glycolic acid) Blends: A Rabbit Critical-Sized Bone Defect Model. ACS Biomaterials Science and Engineering, 2021, 7, 1564-1572.	2.6	9
4	The Mechanism of Metallosis After Total Hip Arthroplasty. Regenerative Engineering and Translational Medicine, 2021, 7, 247-261.	1.6	27
5	A Regenerative Polymer Blend Composed of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic- <i>co</i> -glycolic acid). ACS Applied Polymer Materials, 2020, 2, 1169-1179.	2.0	17
6	Nanofiber Technology for Regenerative Engineering. ACS Nano, 2020, 14, 9347-9363.	7.3	68
7	Biomedical applications of polyphosphazenes. Medical Devices & Sensors, 2020, 3, e10113.	2.7	9
8	<scp>Thiopheneâ€based</scp> polyphosphazenes with tunable optoelectronic properties. Journal of Polymer Science, 2020, 58, 3294-3310.	2.0	4
9	Matrix-Based Bone Regenerative Engineering. , 2020, , 135-148.		2
10	Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 030801.	0.6	28
11	Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2019, 5, 128-154.	1.6	91
12	Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly (lactic-co-glycolic acid). Progress in Polymer Science, 2019, 98, 101146.	11.8	40
13	Synthesis, Physicochemical Analysis, and Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials. ACS Applied Polymer Materials, 2019, 1, 1568-1578.	2.0	24
14	Polyphosphazene-Based Biomaterials for Regenerative Engineering. ACS Symposium Series, 2018, , 53-75.	0.5	10
15	Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2017, 3, 15-31.	1.6	52