Nai-Qing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 13180-13191.	7.2	727
2	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	5.8	379
3	Revealing the role of crystal orientation of protective layers for stable zinc anode. Nature Communications, 2020, 11, 3961.	5.8	378
4	pH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film. Langmuir, 2015, 31, 1393-1399.	1.6	213
5	Electrochemical characteristics of LSCF–SDC composite cathode for intermediate temperature SOFC. Electrochimica Acta, 2007, 52, 4589-4594.	2.6	204
6	Nitrogen-Doped CoSe ₂ as a Bifunctional Catalyst for High Areal Capacity and Lean Electrolyte of Li–S Battery. ACS Energy Letters, 2020, 5, 3041-3050.	8.8	202
7	MoN Supported on Graphene as a Bifunctional Interlayer for Advanced Liâ€S Batteries. Advanced Energy Materials, 2019, 9, 1901940.	10.2	190
8	Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Electrochimica Acta, 2011, 56, 4058-4064.	2.6	183
9	Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chemical Engineering Journal, 2019, 356, 1042-1051.	6.6	181
10	Mussel-inspired tailoring of membrane wettability for harsh water treatment. Journal of Materials Chemistry A, 2015, 3, 2650-2657.	5.2	175
11	From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion. Nanoscale, 2013, 5, 2776.	2.8	168
12	Intercalation Pseudocapacitive Zn ²⁺ Storage with Hydrated Vanadium Dioxide toward Ultrahigh Rate Performance. Advanced Materials, 2020, 32, e1908420.	11.1	168
13	A Dynamic and Selfâ€Adapting Interface Coating for Stable Znâ€Metal Anodes. Advanced Materials, 2022, 34, e2105133.	11.1	167
14	A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. Journal of Materials Chemistry, 2012, 22, 11778.	6.7	159
15	pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity. ACS Applied Materials & Interfaces, 2014, 6, 636-641.	4.0	132
16	Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy. Journal of Power Sources, 2007, 168, 338-345.	4.0	130
17	Precise Synthesis of Fe-N ₂ Sites with High Activity and Stability for Long-Life Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 16105-16113.	7.3	120
18	Rational Design of Hierarchical SnO ₂ /1T-MoS ₂ Nanoarray Electrode for Ultralong-Life Li–S Batteries. ACS Energy Letters, 2018, 3, 1627-1633.	8.8	119

#	Article	IF	CITATIONS
19	Higher Yield Urea-Derived Polymeric Graphitic Carbon Nitride with Mesoporous Structure and Superior Visible-Light-Responsive Activity. ACS Sustainable Chemistry and Engineering, 2015, 3, 3412-3419.	3.2	118
20	Building High Rate Capability and Ultrastable Dendriteâ€Free Organic Anode for Rechargeable Aqueous Zinc Batteries. Advanced Science, 2020, 7, 2000146.	5.6	117
21	Ternary Ta ₂ NiSe ₅ Flakes for a Highâ€Performance Infrared Photodetector. Advanced Functional Materials, 2016, 26, 8281-8289.	7.8	112
22	Constructing the Efficient Ion Diffusion Pathway by Introducing Oxygen Defects in Mn ₂ O ₃ for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 28199-28205.	4.0	111
23	Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. Journal of Materials Chemistry, 2012, 22, 13637.	6.7	107
24	Blocking Polysulfide with Co ₂ B@CNT via "Synergetic Adsorptive Effect―toward Ultrahigh-Rate Capability and Robust Lithium–Sulfur Battery. ACS Nano, 2019, 13, 6742-6750.	7.3	105
25	A Class of Catalysts of BiOX (X = Cl, Br, I) for Anchoring Polysulfides and Accelerating Redox Reaction in Lithium Sulfur Batteries. ACS Nano, 2019, 13, 13109-13115.	7.3	104
26	In Situ Synthesis of CuCo ₂ S ₄ @N/S-Doped Graphene Composites with Pseudocapacitive Properties for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 11708-11714.	4.0	101
27	Fe-MOF derived jujube pit like Fe3O4/C composite as sulfur host for lithium-sulfur battery. Electrochimica Acta, 2019, 295, 444-451.	2.6	101
28	Expediting the Conversion of Li ₂ S ₂ to Li ₂ S Enables High-Performance Li–S Batteries. ACS Nano, 2021, 15, 7318-7327.	7.3	101
29	Ni–YSZ gradient anodes for anode-supported SOFCs. Journal of Power Sources, 2007, 166, 337-342.	4.0	96
30	Graphene Aerogels with Anchored Subâ€Micrometer Mulberryâ€Like ZnO Particles for Highâ€Rate and Longâ€Cycle Anode Materials in Lithium Ion Batteries. Small, 2016, 12, 5208-5216.	5.2	87
31	Preparation and characterization of Pr1â^'xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2007, 172, 633-640.	4.0	86
32	Ultra-high rate Li–S batteries based on a novel conductive Ni ₂ P yolk–shell material as the host for the S cathode. Journal of Materials Chemistry A, 2017, 5, 14519-14524.	5.2	86
33	Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. Journal of Power Sources, 2016, 333, 30-36.	4.0	85
34	Electrochemical preparation of porous MoO3film with a high rate performance as anode for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 221-224.	5.2	83
35	Highly dispersed Ag nanoparticles (<10nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. Journal of Power Sources, 2012, 205, 479-482.	4.0	80
36	A study of process parameters of LSM and LSM–YSZ composite cathode films prepared by screen-printing. Journal of Power Sources, 2008, 175, 288-295.	4.0	77

#	Article	IF	CITATIONS
37	Ion‧elective Prussianâ€Blueâ€Modified Celgard Separator for Highâ€Performance Lithium–Sulfur Battery. ChemSusChem, 2018, 11, 3345-3351.	3.6	77
38	In situ preparation of 3D graphene aerogels@hierarchical Fe ₃ O ₄ nanoclusters as high rate and long cycle anode materials for lithium ion batteries. Chemical Communications, 2015, 51, 1597-1600.	2.2	76
39	Improved SOFC performance with continuously graded anode functional layer. Electrochemistry Communications, 2009, 11, 1120-1123.	2.3	75
40	Kinetics enhancement of lithium–sulfur batteries by interlinked hollow MoO ₂ sphere/nitrogen-doped graphene composite. Journal of Materials Chemistry A, 2017, 5, 25187-25192.	5.2	75
41	Underwater Superoleophilic to Superoleophobic Wetting Control on the Nanostructured Copper Substrates. ACS Applied Materials & Interfaces, 2013, 5, 11363-11370.	4.0	74
42	Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode. Energy Storage Materials, 2022, 44, 353-359.	9.5	73
43	Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 654-656.	2.3	72
44	Metal–Organic Framework-Derived Co ₃ ZnC/Co Embedded in Nitrogen-Doped Carbon Nanotube-Grafted Carbon Polyhedra as a High-Performance Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 6245-6252.	4.0	72
45	Stable artificial solid electrolyte interphase films for lithium metal anode <i>via</i> metal–organic frameworks cemented by polyvinyl alcohol. Journal of Materials Chemistry A, 2020, 8, 251-258.	5.2	72
46	Hierarchical mesoporous SnO ₂ nanosheets on carbon cloth toward enhancing the polysulfides redox for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 19613-19618.	5.2	71
47	Coupled flower-like Bi ₂ S ₃ and graphene aerogels for superior sodium storage performance. Nanoscale, 2017, 9, 17694-17698.	2.8	70
48	Iron fluoride vertical nanosheets array modified with graphene quantum dots as long-life cathode for lithium ion batteries. Chemical Engineering Journal, 2019, 371, 245-251.	6.6	70
49	Metal–organic framework-derived Zn _{0.975} Co _{0.025} S/CoS ₂ embedded in N,S-codoped carbon nanotube/nanopolyhedra as an efficient electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 10441-10446.	5.2	69
50	Catalytic effect in Li-S batteries: From band theory to practical application. Materials Today, 2022, 57, 84-120.	8.3	69
51	SnS ₂ /SnO ₂ Heterostructures towards Enhanced Electrochemical Performance of Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 5416-5421.	1.7	68
52	Long-Life Lithium–Sulfur Battery Derived from Nori-Based Nitrogen and Oxygen Dual-Doped 3D Hierarchical Biochar. ACS Applied Materials & Interfaces, 2017, 9, 18889-18896.	4.0	66
53	A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochimica Acta, 2009, 54, 1888-1892.	2.6	64
54	An In Situ Ionic-Liquid-Assisted Synthetic Approach to Iron Fluoride/Graphene Hybrid Nanostructures as Superior Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 5057-5063.	4.0	64

#	Article	IF	CITATIONS
55	Confined Iron Fluoride@CMKâ€3 Nanocomposite as an Ultrahigh Rate Capability Cathode for Liâ€lon Batteries. Small, 2014, 10, 2039-2046.	5.2	63
56	Facile ammonia-induced fabrication of nanoporous NiO films with enhanced lithium-storage properties. Electrochemistry Communications, 2012, 20, 137-140.	2.3	62
57	Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries. Journal of Power Sources, 2016, 325, 506-512.	4.0	62
58	Design of MoS ₂ /Graphene van der Waals Heterostructure as Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media. ACS Applied Materials & Interfaces, 2020, 12, 24777-24785.	4.0	62
59	Ni/YSZ and Ni–CeO2/YSZ anodes prepared by impregnation for solid oxide fuel cells. Journal of Power Sources, 2007, 169, 253-258.	4.0	61
60	Constructing multi-functional Janus separator toward highly stable lithium batteries. Energy Storage Materials, 2020, 28, 153-159.	9.5	60
61	Metallic NiSe ₂ nanoarrays towards ultralong life and fast Li ₂ S oxidation kinetics of Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 15302-15308.	5.2	59
62	Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries. Cell Reports Physical Science, 2022, 3, 100824.	2.8	59
63	The influence of holding time on the performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery. Journal of Alloys and Compounds, 2010, 502, 215-219.	2.8	58
64	Decoration of graphene with silicon nanoparticles by covalent immobilization for use as anodes in high stability lithium ion batteries. Journal of Power Sources, 2013, 240, 212-218.	4.0	58
65	Metal–Organic-Framework-Derived Yolk–Shell-Structured Cobalt-Based Bimetallic Oxide Polyhedron with High Activity for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 31777-31785.	4.0	58
66	Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon, 2019, 150, 378-387.	5.4	58
67	Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution. Journal of Solid State Electrochemistry, 2009, 13, 1381-1386.	1.2	57
68	Magnetically Induced Reversible Transition between Cassie and Wenzel States of Superparamagnetic Microdroplets on Highly Hydrophobic Silicon Surface. Journal of Physical Chemistry C, 2012, 116, 18796-18802.	1.5	56
69	Copper cobalt spinel as a high performance cathode for intermediate temperature solid oxide fuel cells. Chemical Communications, 2016, 52, 8615-8618.	2.2	56
70	Crystal Facet Engineering Induced Active Tin Dioxide Nanocatalysts for Highly Stable Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2102995.	10.2	56
71	Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage. Journal of Materials Chemistry, 2012, 22, 15080.	6.7	55
72	The facile synthesis and enhanced lithium–sulfur battery performance of an amorphous cobalt boride (Co ₂ B)@graphene composite cathode. Journal of Materials Chemistry A, 2018, 6, 24045-24049.	5.2	55

5

#	Article	IF	CITATIONS
73	Anchoring hollow MoO2 spheres on graphene for superior lithium storage. Chemical Engineering Journal, 2018, 334, 257-263.	6.6	54
74	Designing Heterogeneous Chemical Composition on Hierarchical Structured Copper Substrates for the Fabrication of Superhydrophobic Surfaces with Controlled Adhesion. ACS Applied Materials & Interfaces, 2013, 5, 8753-8760.	4.0	53
75	Self-supported, binder-free 3D hierarchical iron fluoride flower-like array as high power cathode material for lithium batteries. Nano Energy, 2014, 4, 7-13.	8.2	53
76	In situ conversion to construct fast ion transport and high catalytic cathode for high-sulfur loading with lean electrolyte lithium–sulfur battery. Nano Energy, 2022, 95, 106979.	8.2	53
77	pH-Controllable Water Permeation through a Nanostructured Copper Mesh Film. ACS Applied Materials & Interfaces, 2012, 4, 5826-5832.	4.0	52
78	Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries. Energy Storage Materials, 2021, 41, 248-254.	9.5	51
79	Porous MoO3 films with ultra-short relaxation time used for supercapacitors. Materials Research Bulletin, 2013, 48, 1328-1332.	2.7	49
80	3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries. Journal of Nanomaterials, 2012, 2012, 1-19.	1.5	48
81	High-Index Faceted Nanocrystals as Highly Efficient Bifunctional Electrocatalysts for High-Performance Lithium–Sulfur Batteries. Nano-Micro Letters, 2022, 14, 40.	14.4	48
82	A novel grain restraint strategy to synthesize highly crystallized Li4Ti5O12 (â^¼20 nm) for lithium ion batteries with superior high-rate performance. Journal of Materials Chemistry, 2012, 22, 11688.	6.7	47
83	Redox Mediator: A New Strategy in Designing Cathode for Prompting Redox Process of Li–S Batteries. Advanced Science, 2019, 6, 1900958.	5.6	47
84	MoP hollow nanospheres encapsulated in 3D reduced graphene oxide networks as high rate and ultralong cycle performance anodes for sodium-ion batteries. Nanoscale, 2019, 11, 7129-7134.	2.8	47
85	Electrochemically active separators with excellent catalytic ability toward high-performance Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 11694-11699.	5.2	46
86	Probing oxygen vacancy effect on oxygen reduction reaction of the NdBaCo2O5+δ cathode for solid oxide fuel cells. Journal of Power Sources, 2020, 459, 228017.	4.0	46
87	Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 16515-16524.	7.3	46
88	Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method. Journal of Membrane Science, 2008, 320, 500-504.	4.1	44
89	Nitrogen Plasma-Treated Core–Bishell Si@SiO _{<i>x</i>} @TiO _{2â^'δ} : Nanoparticles with Significantly Improved Lithium Storage Performance. ACS Applied Materials & Interfaces, 2019, 11, 27658-27666.	4.0	44
90	Microstructure and electrochemical characterization of solid oxide fuel cells fabricated by co-tape casting. Journal of Power Sources, 2009, 191, 528-533.	4.0	43

#	Article	IF	CITATIONS
91	MOF-directed templating synthesis of hollow nickel-cobalt sulfide with enhanced electrocatalytic activity for oxygen evolution. International Journal of Hydrogen Energy, 2018, 43, 8815-8823.	3.8	43
92	The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2021, 32, 2249-2253.	4.8	43
93	Fabrication and evaluation of anode and thin Y2O3-stabilized ZrO2 film by co-tape casting and co-firing technique. Journal of Power Sources, 2010, 195, 2644-2648.	4.0	41
94	A Conductive Ni ₂ P Nanoporous Composite with a 3D Structure Derived from a Metal–Organic Framework for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2018, 24, 13253-13258.	1.7	41
95	Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li–S battery. Rare Metals, 2021, 40, 3147.	3.6	41
96	Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Materials Letters, 2012, 76, 55-58.	1.3	40
97	Recycled Superwetting Nanostructured Copper Mesh Film: Toward Bidirectional Separation of Emulsified Oil/Water Mixtures. Advanced Materials Interfaces, 2016, 3, 1600370.	1.9	40
98	Moâ€O Between MoS ₂ and Graphene Toward Accelerated Polysulfide Catalytic Conversion for Advanced Lithiumâ€Sulfur Batteries. Advanced Science, 2022, 9, .	5.6	40
99	Study on Properties of LSGM Electrolyte Made by Tape Casting Method and Applications in SOFC. Journal of Rare Earths, 2006, 24, 90-92.	2.5	37
100	3D porous micro/nanostructured interconnected metal/metal oxide electrodes for high-rate lithium storage. RSC Advances, 2013, 3, 432-437.	1.7	37
101	The facile preparation of a cobalt disulfide–reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells. Chemical Communications, 2015, 51, 1846-1849.	2.2	37
102	Rational design of well-dispersed ultrafine CoS ₂ nanocrystals in micro–mesoporous carbon spheres with a synergistic effect for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 10885-10890.	5.2	37
103	Comparison of infiltrated ceramic fiber paper and mica base compressive seals for planar solid oxide fuel cells. Journal of Power Sources, 2007, 168, 447-452.	4.0	36
104	Improved performance of ammonia-fueled solid oxide fuel cell with SSZ thin film electrolyte and Ni-SSZ anode functional layer. International Journal of Hydrogen Energy, 2012, 37, 10857-10865.	3.8	35
105	Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes. Materials Letters, 2012, 89, 243-246.	1.3	35
106	PVP incorporated MoS ₂ as a Mg ion host with enhanced capacity and durability. Journal of Materials Chemistry A, 2019, 7, 4426-4430.	5.2	35
107	A MoS ₂ and Graphene Alternately Stacking van der Waals Heterostructure for Li ⁺ /Mg ²⁺ Coâ€Intercalation. Advanced Functional Materials, 2021, 31, 2103214.	7.8	35
108	Constructing Heterogeneous Structure in Metal–Organic Framework-Derived Hierarchical Sulfur Hosts for Capturing Polysulfides and Promoting Conversion Kinetics. ACS Nano, 2021, 15, 18363-18373.	7.3	35

#	Article	IF	CITATIONS
109	A Dualâ€Protective Artificial Interface for Stable Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2102242.	10.2	35
110	Improved electrochemical performance of SrCo0.8Fe0.2O3â^'δ–La0.45Ce0.55O2â^'δ composite cathodes for IT-SOFC. Electrochemistry Communications, 2007, 9, 431-435.	2.3	34
111	Flexible patterned micro-electrochemical capacitors based on PEDOT. Chemical Communications, 2014, 50, 6789-6792.	2.2	34
112	A multifunctional separator based on scandium oxide nanocrystal decorated carbon nanotubes for high performance lithium–sulfur batteries. Nanoscale, 2020, 12, 6832-6843.	2.8	34
113	Performance of mixâ€impregnated CeO ₂ â€Ni/YSZ Anodes for Direct Oxidation of Methane in Solid Oxide Fuel Cells. Fuel Cells, 2009, 9, 729-739.	1.5	33
114	Optimization on fabrication and performance of A-site-deficient La0.58Sr0.4Co0.2Fe0.8O3-δ cathode for SOFC. Journal of Solid State Electrochemistry, 2009, 13, 455-467.	1.2	33
115	A facile method to prepare hybrid LiNi0.5Mn1.5O4/C with enhanced rate performance. Journal of Alloys and Compounds, 2011, 509, 3783-3786.	2.8	33
116	Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling <i>n</i> -Alkanoic Acids. ACS Applied Materials & Interfaces, 2015, 7, 20410-20417.	4.0	33
117	Nanoflake δ-MnO2 deposited on carbon nanotubes-graphene-Ni foam scaffolds as self-standing three-dimensional porous anodes for high-rate-performance lithium-ion batteries. Journal of Power Sources, 2018, 402, 373-380.	4.0	33
118	Stabilized Zn Anode Based on SO ₄ ^{2–} Trapping Ability and High Hydrogen Evolution Barrier. Advanced Functional Materials, 2022, 32, .	7.8	33
119	Preparation of dual-pore anode supported Sc2O3-stabilized-ZrO2 electrolyte planar solid oxide fuel cell by phase-inversion and dip-coating. Journal of Power Sources, 2012, 218, 352-356.	4.0	32
120	Synthesis of carbon coated Bi 2 O 3 nanocomposite anode for sodium-ion batteries. Ceramics International, 2017, 43, 8819-8823.	2.3	32
121	High lithiophilic nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze for lithium metal anode. Chinese Chemical Letters, 2021, 32, 2254-2258.	4.8	32
122	Super-hydrophobic surface with switchable adhesion responsive to both temperature and pH. Soft Matter, 2012, 8, 9635.	1.2	31
123	In situ synthesis of LiV3O8 nanorods on graphene as high rate-performance cathode materials for rechargeable lithium batteries. Chemical Communications, 2013, 49, 9143.	2.2	30
124	Fabrication and characterization of Ni-SSZ gradient anodes/SSZ electrolyte for anode-supported SOFCs by tape casting and co-sintering technique. International Journal of Hydrogen Energy, 2015, 40, 8433-8441.	3.8	30
125	Metal–Organic Frameworksâ€Derived Porous Yolk–Shell MoP/Cu ₃ P@carbon Microcages as Highâ€Performance Anodes for Sodiumâ€ion Batteries. Energy and Environmental Materials, 2020, 3, 529-534.	7.3	30
126	MoS2/graphene heterostructure with facilitated Mg-diffusion kinetics for high-performance rechargeable magnesium batteries. Chemical Engineering Journal, 2021, 412, 128736.	6.6	30

#	Article	IF	CITATIONS
127	Modifying hydrogel electrolyte to induce zinc deposition for dendrite-free zinc metal anode. Electrochimica Acta, 2021, 393, 139094.	2.6	30
128	<i>in situ</i> engineered ultrafine NiS ₂ -ZnS heterostructures in micro–mesoporous carbon spheres accelerating polysulfide redox kinetics for high-performance lithium–sulfur batteries. Nanoscale, 2020, 12, 16201-16207.	2.8	28
129	Effective Ag–CuO sealant for planar solid oxide fuel cells. Journal of Alloys and Compounds, 2010, 496, 96-99.	2.8	27
130	Accelerating Sulfur Redox Reactions by Topological Insulator Bi ₂ Te ₃ for Highâ€Performance Li‧ Batteries. Advanced Functional Materials, 2022, 32, .	7.8	27
131	A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries. Materials Today Energy, 2022, 28, 101076.	2.5	27
132	Effects of the nickel-coated ferritic stainless steel for solid oxide fuel cells interconnects. Corrosion Science, 2008, 50, 1926-1931.	3.0	26
133	A novel doped CeO2–LaFeO3 composite oxide as both anode and cathode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 12574-12579.	3.8	26
134	Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 822, 153751.	2.8	26
135	2020 Roadmap on Zinc Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3696-3708.	1.7	26
136	Synthesis of Pr0.6Sr0.4FeO3â^'δ–xCe0.9Pr0.1O2â^'δ cobalt-free composite cathodes by a one-pot method for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41, 4005-4015.	3.8	25
137	Review—Status of Zinc-Silver Battery. Journal of the Electrochemical Society, 2019, 166, A2980-A2989.	1.3	25
138	Packing FeF3·0.33H2O into porous graphene/carbon nanotube network as high volumetric performance cathode for lithium ion battery. Journal of Power Sources, 2020, 447, 227303.	4.0	25
139	Regulating Coordination Environment in Metal–Organic Frameworks for Adsorption and Redox Conversion of Polysulfides in Lithium–Sulfur Batteries. , 2021, 3, 1684-1694.		25
140	Preparation of honeycomb porous La0.6Sr0.4Co0.2Fe0.8O3â~δ–Gd0.2Ce0.8O2â~δ composite cathodes by breath figures method for solid oxide fuel cells. Applied Surface Science, 2011, 258, 50-57.	3.1	24
141	Improved electrochemical performance of CuCrO2 anode with CNTs as conductive agent for lithium ion batteries. Materials Letters, 2013, 97, 113-116.	1.3	24
142	A pH-responsive superwetting nanostructured copper mesh film for separating both water-in-oil and oil-in-water emulsions. RSC Advances, 2016, 6, 72317-72325.	1.7	24
143	Nanostructured CuCo2O4 cathode for intermediate temperature solid oxide fuel cells via an impregnation technique. Journal of Power Sources, 2017, 343, 268-274.	4.0	24
144	Two-dimensional Nb ₂ O ₅ holey nanosheets prepared by a graphene sacrificial template method for high performance Mg ²⁺ /Li ⁺ hybrid ion batteries. Nanoscale, 2019, 11, 16222-16227.	2.8	24

#	Article	IF	CITATIONS
145	Significant Zirconium Substitution Effect on the Oxygen Reduction Activity of the Cathode Material NdBaCo ₂ O _{5+δ} for Solid Oxide Fuel Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 11603-11611.	3.2	24
146	Ultrasmall Iron Fluoride Nanoparticles Embedded in Graphitized Porous Carbon Derived from Feâ€Based Metal Organic Frameworks as Highâ€Performance Cathode Materials for Li Batteries. ChemElectroChem, 2019, 6, 2189-2194.	1.7	24
147	Self-supported PPy-encapsulated CoS ₂ nanosheets anchored on the TiO _{2â^'x} nanorod array support by Ti–S bonds for ultra-long life hybrid Mg ²⁺ /Li ⁺ batteries. Journal of Materials Chemistry A, 2020, 8, 22712-22719.	5.2	24
148	A novel Nb and Cu co-doped SrCoO3-δ cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 10862-10870.	3.8	24
149	Electrochemical properties of A-site deficient SOFC cathodes under Cr poisoning conditions. Electrochimica Acta, 2009, 54, 7305-7312.	2.6	23
150	High storage performance of core–shell Si@C nanoparticles as lithium ion battery anodematerial. Materials Letters, 2013, 96, 170-173.	1.3	23
151	Preparation of polypyrrole-coated Bi 2 O 3 @CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta, 2017, 238, 202-209.	2.6	23
152	Interlayer-expanded MoS2 nanoflowers anchored on the graphene: A high-performance Li+/Mg2+ co-intercalation cathode material. Chemical Engineering Journal, 2022, 428, 131214.	6.6	23
153	Novel compressive seals for solid oxide fuel cells. Journal of Power Sources, 2006, 161, 901-906.	4.0	22
154	Polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) with crosslinked poly(ethylene glycol) for lithium batteries. Solid State Ionics, 2009, 180, 693-697.	1.3	22
155	Selective Transportation of Microdroplets Assisted by a Superhydrophobic Surface with pHâ€Responsive Adhesion. Chemistry - an Asian Journal, 2013, 8, 3200-3206.	1.7	22
156	Fabrication of CuCo2S4 hollow sphere @N/S doped graphene composites as high performance anode materials for lithium ion batteries. Ceramics International, 2018, 44, 11905-11909.	2.3	22
157	A material of hierarchical interlayer-expanded MoS ₂ nanosheets/hollow N-doped carbon nanofibers as a promising Li ⁺ /Mg ²⁺ co-intercalation host. Journal of Materials Chemistry A, 2021, 9, 11545-11552.	5.2	22
158	An ultralight electroconductive metal-organic framework membrane for multistep catalytic conversion and molecular sieving in lithium-sulfur batteries. Energy Storage Materials, 2022, 51, 882-889.	9.5	22
159	A Vapor-Phase Corrosion Strategy to Hierarchically Mesoporous Nanosheet-Assembled Gearlike Pillar Arrays for Super-Performance Lithium Storage. Journal of Physical Chemistry C, 2012, 116, 21224-21231.	1.5	21
160	Surface modification of LiV3O8 nanosheets via layer-by-layer self-assembly for high-performance rechargeable lithium batteries. Journal of Power Sources, 2014, 257, 319-324.	4.0	21
161	Solid oxide fuel cell composite cathodes prepared by infiltration of copper manganese spinel into porous yttria stabilized zirconia. Journal of Materials Chemistry, 2008, 18, 4341.	6.7	20
162	Fabrication of anode-supported Sc2O3-stabilized-ZrO2 electrolyte micro-tubular Solid Oxide Fuel Cell by phase-inversion and dip-coating. Electrochemistry Communications, 2012, 20, 117-120.	2.3	20

#	Article	IF	CITATIONS
163	A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage. Sustainable Energy and Fuels, 2019, 3, 2577-2582.	2.5	20
164	Sulfur tolerance improvement of Ni-YSZ anode by alkaline earth metal oxide BaO for solid oxide fuel cells. Electrochemistry Communications, 2012, 19, 63-66.	2.3	19
165	Efficient Polysulfide Trapping and Conversion on Nâ€Doped CoTe ₂ via Enhanced Dualâ€Anchoring Effect. Small, 2021, 17, e2102962.	5.2	19
166	Evaluation of lanthanum ferrite coated interconnect for intermediate temperature solid oxide fuel cells. Thin Solid Films, 2008, 516, 1857-1863.	0.8	18
167	Preparation and characterization of nano-tube and nano-rod structured La0.8Sr0.2MnO3-Î′/Zr0.92Y0.08O2 composite cathodes for solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 570-573.	2.3	18
168	Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 21695-21702.	5.2	18
169	Enhanced sulfur and carbon coking tolerance of novel co-doped ceria based anode for solid oxide fuel cells. Journal of Power Sources, 2012, 201, 128-135.	4.0	17
170	Carbon Nanohorns Carried Iron Fluoride Nanocomposite with ultrahigh rate lithium ion storage properties. Scientific Reports, 2015, 5, 12154.	1.6	17
171	Integration of nickel phosphide nanodot-enriched 3D graphene-like carbon with carbon fibers as self-supported sulfur hosts for advanced lithium sulfur batteries. Electrochimica Acta, 2021, 382, 138267.	2.6	17
172	Effect of co-sintering temperature on the performance of SOFC with YSZ electrolyte thin films fabricated by dip-coating method. Journal of Solid State Electrochemistry, 2010, 14, 637-642.	1.2	16
173	One-Dimensional CuCo ₂ O ₄ –Er _{0.4} Bi _{1.6} O ₃ Composite Fiber as Cathode of Intermediate Temperature Solid Oxide Fuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 3950-3958.	3.2	16
174	Metal-organic framework-derived heterostructured ZnCo2O4@FeOOH hollow polyhedrons for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 832, 155067.	2.8	16
175	Heterogeneous Mediator Enabling Threeâ€Dimensional Growth of Lithium Sulfide for Highâ€Performance Lithium–Sulfur Batteries. Energy and Environmental Materials, 2022, 5, 1214-1221.	7.3	16
176	Sealing Glass of Barium-Calcium-Aluminosilicate System for Solid Oxide Fuel Cells. Journal of Rare Earths, 2007, 25, 434-438.	2.5	15
177	Improved electrochemical performance of NiO–La0.45Ce0.55O2â^î^ composite anodes for IT-SOFC through the introduction of a La0.45Ce0.55O2â^Î î interlayer. Electrochimica Acta, 2008, 54, 862-867.	2.6	15
178	Preparation and performance of large-area La0.9Sr0.1Ga0.8Mg0.2O3â^'δ electrolyte for intermediate temperature solid oxide fuel cell. Journal of Power Sources, 2010, 195, 7583-7586.	4.0	15
179	Hierarchical Mn ₃ O ₄ Anchored on 3D Graphene Aerogels via Câ^'Oâ^'Mn Linkage with Superior Electrochemical Performance for Flexible Asymmetric Supercapacitor. Chemistry - A European Journal, 2020, 26, 9314-9318.	1.7	15
180	Electrochemical performance of La0.3Sr0.7Ti0.3Fe0.7O3-Î′/CeO2 composite cathode for CO2 reduction in solid oxide electrolysis cells. Journal of Power Sources, 2020, 451, 227334.	4.0	15

#	Article	IF	CITATIONS
181	High performance three-dimensionally ordered macroporous composite cathodes for intermediate temperature solid oxidefuel cells. RSC Advances, 2012, 2, 802-804.	1.7	14
182	Adjusting surface oxygen vacancies prompted perovskite as high performance cathode for solid oxide fuel cell. Journal of Alloys and Compounds, 2021, 865, 158746.	2.8	14
183	Preparation of honeycomb porous solid oxide fuel cell cathodes by breath figures method. International Journal of Hydrogen Energy, 2011, 36, 7641-7648.	3.8	13
184	Facile one-step fabrication of dual-pore anode for planar solid oxide fuel cell by the phase inversion. Electrochemistry Communications, 2012, 22, 41-44.	2.3	13
185	Fabrication of layered structure VS4 anchor in 3D graphene aerogels as a new cathode material for lithium ion batteries. Frontiers in Energy, 2019, 13, 597-602.	1.2	13
186	Biomass-Derived P/N-Co-Doped Carbon Nanosheets Encapsulate Cu3P Nanoparticles as High-Performance Anode Materials for Sodium–Ion Batteries. Frontiers in Chemistry, 2020, 8, 316.	1.8	13
187	Porous structured BaCo0.8Nb0.1Sc0.1O3-l̂´ perovskite synthesized by template method as high performance cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2020, 828, 154291.	2.8	13
188	High rate performance of Li[Ni1/3Co1/3Mn1/3]O2 synthesized via co-precipitation method by different precipitators. Journal of Physics and Chemistry of Solids, 2009, 70, 727-731.	1.9	12
189	Chemical Mass Production of MoS ₂ /Graphene van der Waals Heterostructure as a Highâ€Performance Liâ€ion Intercalation Host. ChemElectroChem, 2019, 6, 3393-3400.	1.7	12
190	Improved electrical performance and sintering ability of the composite interconnect La0.7Ca0.3CrO3â^1′/Ce0.8Nd0.2O1.9 for solid oxide fuel cells. Journal of Power Sources, 2009, 191, 377-383.	4.0	11
191	CuCo ₂ O ₄ â€Gd _{0.1} Ce _{0.9} O _{1.95} as a Potential Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells. ChemElectroChem, 2017, 4, 252-255.	1.7	11
192	A hybrid Mg2+/Li+ battery based on high-capacity conversion-type cobalt disulfide cathodes with ultralong cycle life and high energy density. Chemical Engineering Journal, 2021, 405, 126726.	6.6	11
193	Investigation on silver electric adhesive doped with Al2O3 ceramic particles for sealing planar solid oxide fuel cell. Journal of Power Sources, 2009, 192, 408-413.	4.0	10
194	The influence of Li sources on physical and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011, 15, 391-397.	1.2	10
195	The facile preparation of a carbon coated Bi ₂ O ₃ nanoparticle/nitrogen-doped reduced graphene oxide hybrid as a high-performance anode material for lithium-ion batteries. RSC Advances, 2016, 6, 99825-99832.	1.7	10
196	Preparation and characterization of Pr0.6Sr0.4FeO3â^'–Ce0.9Pr0.1O2â^' nanofiber structured composite cathode for IT-SOFCs. Ceramics International, 2016, 42, 9311-9314.	2.3	10
197	Constructing anion vacancy-rich MoSSe/G van der Waals heterostructures for high-performance Mg–Li hybrid-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23276-23285.	5.2	10
198	Electrochemical and microstructural characterization of cyclic redox behaviour of SOFC anodes. Rare Metals, 2006, 25, 300-304.	3.6	9

#	Article	IF	CITATIONS
199	Constrained sintering of Y2O3-stabilized ZrO2 electrolyte on anode substrate. International Journal of Hydrogen Energy, 2012, 37, 18365-18371.	3.8	9
200	One-pot synthesis of 3-D dandelion-like architectures constructed by rutile TiO2 nanorods grown along [001] axis for high-rate lithium ion batteries. RSC Advances, 2015, 5, 21285-21289.	1.7	9
201	Preparation and characterization of one-dimensional nano-structured composite cathodes for solid oxide fuel cells. Journal of Alloys and Compounds, 2016, 663, 664-671.	2.8	9
202	Fabrication and characterization of Ni-SSZ/SSZ/LSM-SSZ anode-supported SOFCs by tape casting and single-step co-sintering techniques. Ionics, 2016, 22, 1145-1152.	1.2	9
203	Built-in electric field enhanced ionic transport kinetics in the T-Nb ₂ O ₅ @MoO ₂ heterostructure. Journal of Materials Chemistry A, 2021, 9, 22854-22860.	5.2	9
204	Synergistic effect of multi-electron conversion and anion redox media chemistry for high-performance rechargeable aqueous Zn ion batteries. Journal of Materials Chemistry A, 2022, 10, 2807-2812.	5.2	9
205	Preparation and Characterization of La0.8Sr0.2MnO3-δ Cathode for SOFCs Fabricated Using Azeotropic Distillation Method. Journal of Rare Earths, 2006, 24, 93-97.	2.5	8
206	Fabrication and characterization of SSZ tape cast electrolyte-supported solid oxide fuel cells. Ceramics International, 2016, 42, 5523-5529.	2.3	8
207	N doped carbon coated V ₂ O ₅ nanobelt arrays growing on carbon cloth toward enhanced performance cathodes for lithium ion batteries. RSC Advances, 2018, 8, 6540-6543.	1.7	8
208	Fabrication Sandwich‣ike V ₂ O ₅ Nanosheets Anchor in Graphene Towards High Energy Lithium Cathode Materials. Energy Technology, 2018, 6, 2115-2119.	1.8	8
209	Probing Zr Substituting Effects on the Oxygen Reduction Reaction of Fe-Based Double Perovskite Cathodes for Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2022, 5, 4486-4495.	2.5	8
210	Fabrication and performance of La0.8Sr0.2MnO3/YSZ graded composite cathodes for SOFC. Rare Metals, 2008, 27, 278-281.	3.6	7
211	A facile and environment-friendly method to fabricate thin electrolyte films for solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509, 5388-5393.	2.8	7
212	Chemical compatibility, thermal expansion matches and electrochemical performance of SrCo0.8Fe0.2O3â^l´î–La0.45Ce0.55O2â^l´ composite cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 12549-12554.	3.8	7
213	Understanding the sintering temperature effect on oxygen ion conductivity in doped ceria electrolytes. Ionics, 2016, 22, 1699-1708.	1.2	7
214	CuCo2O4-Er0.4Bi1.6O3-δ: An active hybrid cathode for intermediate temperature solid oxide fuel cells. Ceramics International, 2019, 45, 6037-6042.	2.3	7
215	Influences of synthesis route and preparation process on the electrochemical properties of Fe-doped strontium cobaltite. Journal of Solid State Electrochemistry, 2012, 16, 313-319.	1.2	6
216	Recovering energy from dye wastewater for a new kind of superior supercapacitor material. RSC Advances, 2014, 4, 21419.	1.7	6

#	Article	IF	CITATIONS
217	High thermal stability of three-dimensionally ordered nano-composite cathodes for solid oxide fuel cells. Electrochimica Acta, 2016, 187, 179-185.	2.6	6
218	3D Hierarchical CNTâ€Based Host with High Sulfur Loading for Lithium‣ulfur Batteries. ChemElectroChem, 2019, 6, 5698-5704.	1.7	6
219	CuO–C modified glass fiber films with a mixed ion and electron-conducting scaffold for highly stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 21961-21967.	5.2	6
220	V-doped T-Nb ₂ O ₅ toward high-performance Mg ²⁺ /Li ⁺ hybrid ion batteries. Journal of Materials Chemistry A, 2022, 10, 577-584.	5.2	6
221	An in situ-formed high lithiophilic solid lubricant interface layer for garnet-based solid-state lithium metal batteries. Electrochimica Acta, 2022, 407, 139767.	2.6	6
222	Iron Fluoride Nanoparticles Embedded in a Nitrogen and Oxygen Dualâ€doped 3D Porous Carbon Derived from Nori for High Rate Cathode in Lithiumâ€ion Battery. ChemistrySelect, 2019, 4, 10334-10339.	0.7	5
223	BaCo 1â€x NbxO 3â^î^ as a Promising Cathode for Intermediate Temperature Solid Oxide Fuel Cells. ChemistrySelect, 2019, 4, 10851-10855.	0.7	4
224	Carbon coated porous SnO2 nanosheet arrays on carbon cloth towards enhanced lithium storage performance. Materials Today Energy, 2019, 14, 100344.	2.5	4
225	Facile synthesis of hierarchical MoS2/ZnS @ porous hollow carbon nanofibers for a stable Li metal anode. Journal of Colloid and Interface Science, 2022, 622, 347-356.	5.0	4
226	Assembling Mixed Carboxylic Acid Molecules on Hierarchical Structured Aluminum Substrates for the Fabrication of Superoleophobic Surfaces with Controlled Oil Adhesion. ChemPlusChem, 2015, 80, 151-157.	1.3	3
227	Highly Efficient CuCo 2 O 4 Decorated Er 0.4 Bi 1.6 O 3 Nanostructured Cathode for Intermediate Temperature Solid Oxide Fuel Cells. ChemistrySelect, 2019, 4, 6606-6613.	0.7	3
228	Kinetically enhanced electrochemical redox reactions by chemical bridging SnO2 and graphene sponges toward high-rate and long-cycle lithium ion battery. Journal of Materials Science and Technology, 2021, 88, 250-257.	5.6	3
229	Electrochemical properties of La0.8Sr0.2FeO3-δ based composite cathode for intermediate temperature SOFC. Rare Metals, 2006, 25, 390-392.	3.6	2
230	Promotion on electrochemical performance of Baâ€deficient Ba1Ââ^'ÂxBi0.05Co0.8Nb0.15O3Ââ~'Âδcathode for intermediate temperature solid oxide fuel cells. International Journal of Energy Research, 2019, 43, 7085.	2.2	2
231	Facile "Lotus Blooming―Strategy to Synthesize a 3D Carbon Nanosheet/Carbon Nanotube Framework with Embedded Co Nanocrystals for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 11343-11352.	2.5	2
232	Interlayer–expanded MoS2 containing structural water with enhanced Mg–diffusion kinetics and durability. ChemElectroChem, 0, , .	1.7	2
233	Enhanced Electrochemical Kinetics on Ni ₂ P Polar Mediators Integrated with Graphene for Lithium–Sulfur Batteries. Advanced Materials Interfaces, 0, , 2102142.	1.9	2
234	Stable and Dendriteâ€Free Lithium Metal Anodes Enabled by Ionic/Electronic Li ₂ S/Mo Interlayer. Advanced Energy and Sustainability Research, 2021, 2, 2100051.	2.8	1