Shaun J Curtin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954562/publications.pdf Version: 2024-02-01

SHALIN I CUDTIN

#	Article	IF	CITATIONS
1	Pathways to de novo domestication of crop wild relatives. Plant Physiology, 2022, 188, 1746-1756.	4.8	27
2	Alfalfa (<i>Medicago sativa</i> L.) <i>pho2</i> mutant plants hyperaccumulate phosphate. G3: Genes, Genomes, Genetics, 2022, , .	1.8	10
3	<i>SELF PRUNING 3C</i> is a flowering repressor that modulates seed germination, root architecture, and drought responses. Journal of Experimental Botany, 2022, 73, 6226-6240.	4.8	5
4	Targeted Mutagenesis of Alfalfa. Compendium of Plant Genomes, 2021, , 271-283.	0.5	3
5	Potato improvement through genetic engineering. GM Crops and Food, 2021, 12, 479-496.	3.8	11
6	Further Disruption of the TAS3 Pathway via the Addition of the AGO7 Mutation to the DRB1, DRB2 or DRB4 Mutations Severely Impairs the Reproductive Competence of Arabidopsis thaliana. Agronomy, 2019, 9, 680.	3.0	3
7	<scp>CRISPR</scp> /Cas9 and <scp>TALEN</scp> s generate heritable mutations for genes involved in small <scp>RNA</scp> processing of <i>Clycine max</i> and <i>Medicago truncatula</i> . Plant Biotechnology Journal, 2018, 16, 1125-1137.	8.3	147
8	Editing the Medicago truncatula Genome: Targeted Mutagenesis Using the CRISPR-Cas9 Reagent. Methods in Molecular Biology, 2018, 1822, 161-174.	0.9	7
9	Validating Genome-Wide Association Candidates Controlling Quantitative Variation in Nodulation. Plant Physiology, 2017, 173, 921-931.	4.8	71
10	A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. Plant Cell, 2017, 29, 1196-1217.	6.6	469
11	Design and Assembly of CRISPR/Cas9 Reagents for Gene Knockout, Targeted Insertion, and Replacement in Wheat. Methods in Molecular Biology, 2017, 1679, 187-212.	0.9	7
12	MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants. G3: Genes, Genomes, Genetics, 2016, 6, 423-433.	1.8	23
13	Genomic variation and DNA repair associated with soybean transgenesis: a comparison to cultivars and mutagenized plants. BMC Biotechnology, 2016, 16, 41.	3.3	54
14	Identical Substitutions in Magnesium Chelatase Paralogs Result in Chlorophyll-Deficient Soybean Mutants. G3: Genes, Genomes, Genetics, 2015, 5, 123-131.	1.8	57
15	CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops and Food, 2015, 6, 243-252.	3.8	162
16	Targeted Mutagenesis for Functional Analysis of Gene Duplication in Legumes. Methods in Molecular Biology, 2013, 1069, 25-42.	0.9	20
17	Genome Engineering of Crops with Designer Nucleases. Plant Genome, 2012, 5, 42-50.	2.8	102
18	Co-expression of soybean Dicer-like genes in response to stress and development. Functional and Integrative Genomics, 2012, 12, 671-682.	3.5	19

SHAUN J CURTIN

#	Article	IF	CITATIONS
19	Isolation and Analysis of Small RNAs from Virus-Infected Plants. Methods in Molecular Biology, 2012, 894, 173-189.	0.9	2
20	DRB2 Is Required for MicroRNA Biogenesis in Arabidopsis thaliana. PLoS ONE, 2012, 7, e35933.	2.5	68
21	Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases Â. Plant Physiology, 2011, 156, 466-473.	4.8	260
22	The Arabidopsis thaliana Double-Stranded RNA Binding (DRB) Domain Protein Family. , 2011, , 385-406.		5
23	Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 2011, 8, 67-69.	19.0	480
24	The <i>Arabidopsis thaliana</i> double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. Rna, 2009, 15, 2219-2235.	3.5	198
25	The roles of plant dsRNAâ€binding proteins in RNAiâ€like pathways. FEBS Letters, 2008, 582, 2753-2760.	2.8	90
26	RNA Silencing and Its Application in Functional Genomics. , 2007, , 291-332.		1
27	Phylogenetic relationships and pathogenicity of Colletotrichum acutatum isolates from grape in subtropical Australia. Plant Pathology, 2007, 56, 448-463.	2.4	85
28	The evolution and diversification of Dicers in plants. FEBS Letters, 2006, 580, 2442-2450.	2.8	283
29	RNA interferenceâ€inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Reports, 2006, 7, 1168-1175.	4.5	284