

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954437/publications.pdf Version: 2024-02-01

HE DEN

#	Article	IF	CITATIONS
1	Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 2015, 46, 13-25.	11.4	208
2	Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials, 2016, 102, 187-197.	11.4	208
3	Hypoxia-Inducible Factor-1 Promotes Pancreatic Ductal Adenocarcinoma Invasion and Metastasis by Activating Transcription of the Actin-Bundling Protein Fascin. Cancer Research, 2014, 74, 2455-2464.	0.9	143
4	Hypoxia-inducible factor (HIF)-1Â directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis, 2008, 29, 1853-1861.	2.8	120
5	Inhibition of HIF-1α by PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma. Oncotarget, 2015, 6, 2250-2262.	1.8	110
6	Multiple Layerâ€by‣ayer Lipidâ€Polymer Hybrid Nanoparticles for Improved FOLFIRINOX Chemotherapy in Pancreatic Tumor Models. Advanced Functional Materials, 2015, 25, 788-798.	14.9	96
7	Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression. Nature Communications, 2017, 8, 14035.	12.8	95
8	LASP1 Is a HIF1α Target Gene Critical for Metastasis of Pancreatic Cancer. Cancer Research, 2015, 75, 111-119.	0.9	90
9	Interleukin 35 Expression Correlates With Microvessel Density inÂPancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice. Gastroenterology, 2018, 154, 675-688.	1.3	89
10	IGFBP2 Activates the NF-κB Pathway to Drive Epithelial–Mesenchymal Transition and Invasive Character in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2016, 76, 6543-6554.	0.9	84
11	PD-L1 is a direct target of cancer-FOXP3 in pancreatic ductal adenocarcinoma (PDAC), and combined immunotherapy with antibodies against PD-L1 and CCL5 is effective in the treatment of PDAC. Signal Transduction and Targeted Therapy, 2020, 5, 38.	17.1	75
12	Hypoxia Inducible Factor 1 (HIF-1) Recruits Macrophage to Activate Pancreatic Stellate Cells in Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2016, 17, 799.	4.1	70
13	A combinatorial strategy using YAP and pan-RAF inhibitors for treating KRAS-mutant pancreatic cancer. Cancer Letters, 2017, 402, 61-70.	7.2	51
14	Detection of Circulating Tumor Cells Using Negative Enrichment Immunofluorescence and an In Situ Hybridization System in Pancreatic Cancer. International Journal of Molecular Sciences, 2017, 18, 622.	4.1	46
15	Targeted Co-delivery of the Iron Chelator Deferoxamine and a HIF1α Inhibitor Impairs Pancreatic Tumor Growth. ACS Nano, 2019, 13, 2176-2189.	14.6	46
16	ESE3 Inhibits Pancreatic Cancer Metastasis by Upregulating E-Cadherin. Cancer Research, 2017, 77, 874-885.	0.9	45
17	Berries and other natural products in pancreatic cancer chemoprevention in human clinical trials. Journal of Berry Research, 2017, 7, 147-161.	1.4	45
18	Control of Treg cell homeostasis and immune equilibrium by Lkb1 in dendritic cells. Nature Communications, 2018, 9, 5298.	12.8	42

He Ren

#	Article	IF	CITATIONS
19	Hypoxia inducible factor (HIF)-1α directly activates leptin receptor (Ob-R) in pancreatic cancer cells. Cancer Letters, 2014, 354, 172-180.	7.2	41
20	Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget, 2016, 7, 13717-13729.	1.8	40
21	LIMS1 Promotes Pancreatic Cancer Cell Survival under Oxygen–Glucose Deprivation Conditions by Enhancing HIF1A Protein Translation. Clinical Cancer Research, 2019, 25, 4091-4103.	7.0	35
22	Evaluation of serum D-dimer, fibrinogen, and CA19-9 for postoperative monitoring and survival prediction in resectable pancreatic carcinoma. World Journal of Surgical Oncology, 2017, 15, 48.	1.9	33
23	Human FOXP3 and tumour microenvironment. Immunology, 2023, 168, 248-255.	4.4	33
24	Tumoral EHF predicts the efficacy of anti-PD1 therapy in pancreatic ductal adenocarcinoma. Journal of Experimental Medicine, 2019, 216, 656-673.	8.5	31
25	CypA, a Gene Downstream of HIF-1α, Promotes the Development of PDAC. PLoS ONE, 2014, 9, e92824.	2.5	30
26	An SGLT2 inhibitor modulates SHH expression by activating AMPK to inhibit the migration and induce the apoptosis of cervical carcinoma cells. Cancer Letters, 2020, 495, 200-210.	7.2	30
27	Prostate-specific membrane antigen as a marker of pancreatic cancer cells. Medical Oncology, 2014, 31, 857.	2.5	29
28	Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials, 2018, 158, 44-55.	11.4	29
29	Somatic gene mutation signatures predict cancer type and prognosis in multiple cancers with pan-cancer 1000 gene panel. Cancer Letters, 2020, 470, 181-190.	7.2	29
30	SCF, Regulated by HIF-1α, Promotes Pancreatic Ductal Adenocarcinoma Cell Progression. PLoS ONE, 2015, 10, e0121338.	2.5	27
31	HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Letters, 2017, 393, 113-124.	7.2	26
32	Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma. Cancer Letters, 2016, 378, 87-96.	7.2	25
33	Stem cell factor is a novel independent prognostic biomarker for hepatocellular carcinoma after curative resection. Carcinogenesis, 2014, 35, 2283-2290.	2.8	23
34	Gemcitabine induced supramolecular hydrogelations of aldehyde-containing short peptides. RSC Advances, 2014, 4, 34729-34732.	3.6	22
35	Nanospheres of doxorubicin as cross-linkers for a supramolecular hydrogelation. Scientific Reports, 2015, 5, 8764.	3.3	21
36	Rituximab-induced HMGB1 release is associated with inhibition of STAT3 activity in human diffuse large B-cell lymphoma. Oncotarget, 2015, 6, 27816-27831.	1.8	20

He Ren

#	Article	IF	CITATIONS
37	The CX3CL1/CX3CR1 reprograms glucose metabolism through HIF-1 pathway in pancreatic adenocarcinoma. Journal of Cellular Biochemistry, 2013, 114, 2603-2611.	2.6	15
38	VHH212 nanobody targeting the hypoxia-inducible factor 1α suppresses angiogenesis and potentiates gemcitabine therapy in pancreatic cancer <i>in vivo</i> . Cancer Biology and Medicine, 2021, 18, 772-787.	3.0	15
39	Targeting chemokines/chemokine receptors: a promising strategy for enhancing the immunotherapy of pancreatic ductal adenocarcinoma. Signal Transduction and Targeted Therapy, 2020, 5, 149.	17.1	10
40	A new combined criterion to better predict malignant lesions in patients with pancreatic cystic neoplasms. Cancer Biology and Medicine, 2018, 15, 70.	3.0	9
41	Resection or cryosurgery relates with pancreatic tumor type: Primary pancreatic cancer with previous non-pancreatic cancer or secondary metastatic cancer within the pancreas. Pancreatology, 2014, 14, 64-70.	1.1	6
42	Epithelial cells mimic immune cells: a novel path toward tumor immunotherapy. Cancer Biology and Medicine, 2021, 18, 0-0.	3.0	1