Korada Viswanatha Sharma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954159/publications.pdf Version: 2024-02-01

		70961	79541
122	5,749	41	73
papers	citations	h-index	g-index
100	100	100	0.475
122	122	122	34/5
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review. Renewable and Sustainable Energy Reviews, 2017, 68, 185-198.	8.2	406
2	The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review. Renewable and Sustainable Energy Reviews, 2016, 53, 1046-1058.	8.2	246
3	Turbulent heat transfer and friction factor of Al2O3 Nanofluid in circular tube with twisted tape inserts. International Journal of Heat and Mass Transfer, 2010, 53, 1409-1416.	2.5	233
4	Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. International Journal of Heat and Mass Transfer, 2018, 116, 1143-1152.	2.5	223
5	Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. International Communications in Heat and Mass Transfer, 2009, 36, 503-507.	2.9	212
6	Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Experimental Thermal and Fluid Science, 2012, 37, 65-71.	1.5	200
7	Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Experimental Thermal and Fluid Science, 2013, 51, 103-111.	1.5	195
8	Empirical and theoretical correlations on viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 2013, 25, 670-686.	8.2	183
9	A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renewable and Sustainable Energy Reviews, 2014, 29, 734-743.	8.2	167
10	A review of thermophysical properties of water based composite nanofluids. Renewable and Sustainable Energy Reviews, 2016, 66, 654-678.	8.2	152
11	Study of viscosity and specific heat capacity characteristics of water-based Al ₂ O ₃ nanofluids at low particle concentrations. Journal of Experimental Nanoscience, 2015, 10, 86-102.	1.3	146
12	Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts. International Journal of Thermal Sciences, 2014, 81, 84-93.	2.6	123
13	Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. International Communications in Heat and Mass Transfer, 2014, 59, 30-38.	2.9	122
14	Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. Journal of Molecular Liquids, 2017, 246, 396-405.	2.3	115
15	Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Solar Energy Materials and Solar Cells, 2018, 179, 118-128.	3.0	115
16	Biowaste Sago Bark Based Catalyst Free Carbon Nanospheres: Waste to Wealth Approach. ACS Sustainable Chemistry and Engineering, 2015, 3, 2247-2253.	3.2	111
17	Heat transfer enhancement using nanofluids in an automotive cooling system. International Communications in Heat and Mass Transfer, 2014, 53, 195-202.	2.9	109
18	Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Applied Thermal Engineering, 2019, 152, 275-286.	3.0	103

#	Article	IF	CITATIONS
19	Performance of Evacuated Tube Solar Collector using Water-Based Titanium Oxide Nanofluid. Journal of Mechanical Engineering and Sciences, 2012, 3, 301-310.	0.3	98
20	Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO 2 nanofluids in water – Ethylene glycol mixture. Applied Thermal Engineering, 2016, 106, 1190-1199.	3.0	97
21	Experimental investigation of thermal conductivity and electrical conductivity of BioGlycol–water mixture based Al2O3 nanofluid. Applied Thermal Engineering, 2016, 102, 932-941.	3.0	97
22	Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: An experimental study. International Journal of Heat and Mass Transfer, 2012, 55, 2761-2768.	2.5	95
23	Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system. International Journal of Refrigeration, 2017, 80, 1-10.	1.8	93
24	Heat transfer enhancements of low volume concentration Al2O3 nanofluid and with longitudinal strip inserts in a circular tube. International Journal of Heat and Mass Transfer, 2010, 53, 4280-4286.	2.5	84
25	Tool life and wear mechanism when machining Hastelloy C-22HS. Wear, 2011, 270, 258-268.	1.5	84
26	Experimental Measurements of Nanofluids Thermal Properties. International Journal of Automotive and Mechanical Engineering, 2013, 7, 850-863.	0.5	78
27	Catalyst free silica templated porous carbon nanoparticles from bio-waste materials. Chemical Communications, 2014, 50, 12702-12705.	2.2	77
28	Experimental investigation on heat transfer performance of TiO 2 nanofluids in water–ethylene glycol mixture. International Communications in Heat and Mass Transfer, 2016, 73, 16-24.	2.9	71
29	Convective condensation of vapor in the presence of a non-condensable gas of high concentration in laminar flow in a vertical pipe. International Journal of Heat and Mass Transfer, 2008, 51, 6090-6101.	2.5	68
30	Heat transfer augmentation of ethylene glycol: water nanofluids and applications — A review. International Communications in Heat and Mass Transfer, 2016, 75, 13-23.	2.9	68
31	Numerical validation of experimental heat transfer coefficient with SiO 2 nanofluid flowing in a tube with twisted tape inserts. Applied Thermal Engineering, 2014, 73, 296-306.	3.0	67
32	The Effect of Nanofluid Volume Concentration on Heat Transfer and Friction Factor inside a Horizontal Tube. Journal of Nanomaterials, 2013, 2013, 1-12.	1.5	64
33	Thermal conductivity enhancement of nanoparticles in distilled water. International Journal of Nanoparticles, 2008, 1, 66.	0.1	63
34	Heat Transfer Enhancement with Al2O3 Nanofluids and Twisted Tapes in a Pipe for Solar Thermal Applications. Procedia Engineering, 2013, 64, 1474-1484.	1.2	57
35	Rheology and thermal conductivity of non-porous silica (SiO 2) in viscous glycerol and ethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 2017, 88, 245-253.	2.9	57
36	Force convection heat transfer of Al 2 O 3 nanofluids for different based ratio of water: Ethylene glycol mixture. Applied Thermal Engineering, 2017, 112, 707-719.	3.0	57

#	Article	IF	CITATIONS
37	Heat transfer from a horizontal fin array by natural convection and radiation—A conjugate analysis. International Journal of Heat and Mass Transfer, 2006, 49, 3379-3391.	2.5	54
38	The effect of cross sectional area of tube on friction factor and heat transfer nanofluid turbulent flow. International Communications in Heat and Mass Transfer, 2013, 47, 49-55.	2.9	51
39	Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conference Series: Materials Science and Engineering, 2012, 36, 012029.	0.3	50
40	Laminar Convective Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube Fitted with Twisted Tape Inserts. International Journal of Automotive and Mechanical Engineering, 2011, 3, 265-278.	0.5	47
41	Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluids. Journal of Molecular Liquids, 2019, 284, 780-792.	2.3	43
42	Heat transfer augmentation of a car radiator using nanofluids. Heat and Mass Transfer, 2014, 50, 1553-1561.	1.2	42
43	Wear analysis when machining AISI 304 with ethylene glycol/TIO2 nanoparticle-based coolant. International Journal of Advanced Manufacturing Technology, 2016, 82, 327-340.	1.5	36
44	Thermal and mechanical properties of urea-formaldehyde (UF) resin combined with multiwalled carbon nanotubes (MWCNT) as nanofiller and fiberboards prepared by UF-MWCNT. Holzforschung, 2015, 69, 199-205.	0.9	34
45	Influence of activated charcoal as filler on the properties of wood composites. International Journal of Adhesion and Adhesives, 2013, 46, 34-39.	1.4	33
46	Heat Transfer Enhancement with Nanofluids – A Review. Journal of Mechanical Engineering and Sciences, 2013, 4, 452-461.	0.3	33
47	A numerical approach in describing ionanofluids behavior in laminar and turbulent flow. Continuum Mechanics and Thermodynamics, 2018, 30, 657-666.	1.4	32
48	Experimental determination of nanofluid specific heat with SiO2 nanoparticles in different base fluids. AIP Conference Proceedings, 2017, , .	0.3	30
49	Experimental Study on Heat Transfer Coefficient and Friction Factor of Al2O3 Nanofluid in A Packed Bed Column. Journal of Mechanical Engineering and Sciences, 2011, 1, 1-15.	0.3	30
50	Verwendung von Aluminiumoxid-Nanopartikeln in Holzwerkstoffen zur Verbesserung des WÄ r medurchgangs beim Heißpressen. European Journal of Wood and Wood Products, 2013, 71, 193-198.	1.3	29
51	Experimental determination of thermophysical properties of Indonesian fly-ash nanofluid for heat transfer applications. Particulate Science and Technology, 2021, 39, 597-606.	1.1	29
52	Nanofluid Properties for Forced Convection Heat Transfer: An Overview. Journal of Mechanical Engineering and Sciences, 2013, 4, 397-408.	0.3	28
53	Experimental investigation on thermal conductivity of fly ash nanofluid and fly ash-Cu hybrid nanofluid: prediction and optimization via ANN and MGGP model. Particulate Science and Technology, 2022, 40, 182-195.	1.1	27
54	Experimental investigation for enhancement of heat transfer from cooling of electronic components by circular air jet impingement. Heat and Mass Transfer, 2012, 48, 1627-1635.	1.2	25

#	Article	IF	CITATIONS
55	Turbulent Forced Convection Heat Transfer of Nanofluids with Twisted Tape Insert in a Plain Tube. Energy Procedia, 2014, 52, 296-307.	1.8	25
56	Numerical simulation of nanofluids for improved cooling efficiency in a 3D copper microchannel heat sink (MCHS). Physics and Chemistry of Liquids, 2018, 56, 311-331.	0.4	23
57	An Experimental Study on Heat Transfer and Friction Factor of Al2O3 Nanofluid. Journal of Mechanical Engineering and Sciences, 2011, 1, 99-112.	0.3	23
58	Catalyst-free synthesis of carbon nanospheres for potential biomedical applications: waste to wealth approach. RSC Advances, 2015, 5, 24528-24533.	1.7	22
59	Influence of Palm Methyl Ester (PME) as an Alternative Fuel in Multicylinder Diesel Engine. Journal of Mechanical Engineering and Sciences, 2012, 3, 331-339.	0.3	22
60	Application of nanomaterials in solar thermal energy storage. Heat and Mass Transfer, 2018, 54, 1555-1577.	1.2	21
61	Influence of Aluminum Oxide Nanoparticles on the Physical and Mechanical Properties of Wood Composites. BioResources, 2013, 8, .	0.5	19
62	Heat transfer enhancement with elliptical tube under turbulent flow TiO2-water nanofluid. Thermal Science, 2016, 20, 89-97.	0.5	19
63	A correlation to predict heat transfer coefficient in nucleate boiling on cylindrical heating elements. International Journal of Thermal Sciences, 2008, 47, 347-354.	2.6	18
64	Energetic and Exergetic Performance of a Solar Flat-Plate Collector Working With Cu Nanofluid. Journal of Solar Energy Engineering, Transactions of the ASME, 2018, 140, .	1.1	18
65	Experimental determination for viscosity of fly ash nanofluid and fly ash-Cu hybrid nanofluid:Prediction and optimization using artificial intelligent techniques. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-20.	1.2	18
66	A correlation to evaluate critical heat flux in small diameter tubes under subcooled conditions of the coolant. International Journal of Heat and Mass Transfer, 2006, 49, 42-51.	2.5	17
67	A Theoretical Study on Convective Condensation of Water Vapor From Humid Air in Turbulent Flow in a Vertical Duct. Journal of Heat Transfer, 2007, 129, 1627-1637.	1.2	17
68	Experimental study on density and thermal conductivity properties of Indian coal fly ash water-based nanofluid. International Journal of Ambient Energy, 2022, 43, 2557-2562.	1.4	17
69	Thermophysical profile of SiC–CuO/C nanocomposite in base liquid ethylene glycol. Powder Technology, 2019, 354, 540-551.	2.1	14
70	Stability and thermophysical properties of fly ash nanofluid for heat transfer applications. Heat Transfer, 2020, 49, 4722-4737.	1.7	14
71	Optimization of processing parameters of medium density fiberboard using response surface methodology for multiwalled carbon nanotubes as a nanofiller. European Journal of Wood and Wood Products, 2017, 75, 203-213.	1.3	13
72	Application of High Conductive Nanoparticles to Enhance the Thermal and Mechanical Properties of Wood Composite. Materials Today: Proceedings, 2018, 5, 3143-3149.	0.9	13

#	Article	IF	CITATIONS
73	Fouling and its effect on the thermal performance of heat exchanger tubes. International Journal of Heat and Technology, 2017, 35, 509-519.	0.3	13
74	Theoretical analysis of heat transfer and friction factor for turbulent flow of nanofluids through pipes. Canadian Journal of Chemical Engineering, 2016, 94, 565-575.	0.9	12
75	Effect of ball milling on the thermal conductivity and viscosity of Indian coal fly ash nanofluid. Heat Transfer, 2020, 49, 4475-4490.	1.7	12
76	Thermophysical properties of fly ash–Cu hybrid nanofluid for heat transfer applications. Heat Transfer, 2020, 49, 4491-4510.	1.7	12
77	Turbulent Film Condensation of Pure Vapors Flowing Normal to A Horizontal Condenser Tube - Constant Heat Flux at the Tube Wall. International Journal of Automotive and Mechanical Engineering, 2011, 4, 455-470.	0.5	10
78	Simulation study of turbulent convective heat transfer enhancement in heated tube flow using TiO ₂ -water nanofluid. IOP Conference Series: Materials Science and Engineering, 2013, 50, 012035.	0.3	9
79	Hot corrosion behavior of thermal spray coatings on superalloy in coal-fired boiler environment. Journal of Materials Research, 2015, 30, 2829-2843.	1.2	9
80	Temperature Dependent Properties of Silicon Carbide Nanofluid in Binary Mixtures of Glycerol-Ethylene Glycol. Procedia Engineering, 2016, 148, 774-778.	1.2	9
81	State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment. Sustainability, 2020, 12, 9119.	1.6	9
82	New correlations for estimation of monthly average daily solar radiation on a horizontal surface using meteorological data. International Journal of Ambient Energy, 2013, 34, 160-174.	1.4	8
83	Investigation of thermal behaviour, pressure drop, and pumping power in a Cu nanofluid-filled solar flat-plate collector. MATEC Web of Conferences, 2017, 131, 01003.	0.1	8
84	The potential of wind and solar energy in Malaysia east coast: preliminary study at Universiti Malaysia Pahang (UMP). WIT Transactions on Ecology and the Environment, 2011, , .	0.0	8
85	Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications. Environmental Science and Pollution Research, 2016, 23, 9411-9417.	2.7	7
86	Numerical investigation for turbulent heat transfer of TiO ₂ –SiO ₂ nanofluids with wire coil inserts. Numerical Heat Transfer; Part A: Applications, 2019, 75, 271-289.	1.2	7
87	Experimental Investigation of Heat Transfer and Friction Factor Characteristics in a Circular Tube with Longitudinal Strip Inserts. Journal of Enhanced Heat Transfer, 2008, 15, 325-333.	0.5	7
88	Convective Condensation of Vapor in Laminar Flow in a Vertical Parallel Plate Channel in the Presence of a High-Concentration Noncondensable Gas. Journal of Heat Transfer, 2009, 131, .	1.2	6
89	Experimental investigations on thermal conductivity of water and Al _{2O_{3 nanofluids at low concentrations. International Journal of Nanoparticles, 2012, 5, 300.}}	0.1	6
90	GO-TiO2 Nano Composites for Silicon PV Cell Application. Materials Today: Proceedings, 2015, 2, 4557-4562.	0.9	6

#	Article	IF	CITATIONS
91	Considerations on the Thermophysical Properties of Nanofluids. Topics in Mining, Metallurgy and Materials Engineering, 2017, , 33-70.	1.4	6
92	Effect of base fluids on thermoâ€physical properties of SiO ₂ nanofluids and development of new correlations. Mathematical Methods in the Applied Sciences, 0, , .	1.2	6
93	Correlation for Heat Transfer in Nucleate Boiling on Horizontal Cylindrical Surface. Heat Transfer Engineering, 2010, 31, 449-457.	1.2	5
94	The role of nanomaterials in the enhancement of non-concentrating solar collectors technology. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 435-441.	0.5	5
95	Numerical modeling of a fuel droplet for the evaluation of ignition temperature considering transport properties. Case Studies in Thermal Engineering, 2017, 10, 121-130.	2.8	4
96	Influence of nanofluid properties on turbulent forced convection heat transfer in different base liquids. Mathematical Methods in the Applied Sciences, 0, , .	1.2	4
97	Experimental Analysis of Heat And Mass Transfer In a Packed Bed. Journal of Mechanical Engineering and Sciences, 2011, 1, 124-132.	0.3	4
98	Diurnal Pattern and Estimation of Global Solar Radiation in East Coast Malaysia. International Journal of Automotive and Mechanical Engineering, 2013, 8, 1162-1175.	0.5	4
99	Turbulent forced convection of Al _{2O_{3 nanofluid in a circular tube with tape inserts at low volume concentration. International Journal of Nano and Biomaterials, 2009, 2, 60.}}	0.1	3
100	Laminar convective heat transfer of nanofluids in a circular tube under constant heat flux. International Journal of Nanoparticles, 2009, 2, 314.	0.1	3
101	Heat transfer from a vertical fin array by laminar natural convection and radiation—A quasiâ€3D approach. Heat Transfer - Asian Research, 2011, 40, 524-549.	2.8	3
102	Heat Transfer Enhancement with Nanofluids for Automotive Cooling. Topics in Mining, Metallurgy and Materials Engineering, 2017, , 71-100.	1.4	3
103	Thermal Spray Coatings for Hot Corrosion Resistance. Topics in Mining, Metallurgy and Materials Engineering, 2017, , 235-268.	1.4	3
104	Experimental determination of viscosity of Water-Glycerine based Cu nano-fluids. Materials Today: Proceedings, 2019, 19, 517-520.	0.9	3
105	Experimental Investigations of Oxygen Stripping from Feed Water in A Spray Cum Tray Type Deaerator. International Journal of Automotive and Mechanical Engineering, 2010, 1, 46-65.	0.5	3
106	Comparison of nanofluid heat transfer properties with theory using generalized property relations for EG-water mixture. MATEC Web of Conferences, 2017, 131, 03004.	0.1	2
107	Fluid dynamic simulations of EG-W (ethylene glycol–water) mixtures to predict nanofluid heat transfer coefficients. Environmental Technology and Innovation, 2020, 20, 101113.	3.0	2
108	Laminar film boiling on a vertical fin. Heat and Mass Transfer, 1989, 24, 19-23.	0.2	1

#	Article	IF	CITATIONS
109	Turbulent film boiling from a vertical non-isothermal surface. Heat and Mass Transfer, 1990, 25, 93-99.	0.2	1
110	Performance study of an evaporator tube working under high heat fluxes. International Journal of Heat and Mass Transfer, 2006, 49, 5027-5034.	2.5	1
111	Application of Natural Gas for Internal Combustion Engines. , 2012, , .		1
112	Aerodynamic Studies in the Static Components of A Centrifugal Compressor Stage. Journal of Mechanical Engineering and Sciences, 2011, 1, 75-86.	0.3	1
113	Improvement in Material Properties of Thermal Energy Stor age Medium with Nanostructured Materials. Nanoscience and Nanotechnology - Asia, 2017, 7, .	0.3	1
114	LAMINAR FILM BOILING ON A VERTICAL SURFACE WITH THERMAL LEAKAGE AT ITS ENDS. Chemical Engineering Communications, 1987, 61, 169-179.	1.5	0
115	Oxygen stripping in deaerator feed water: condensation on spray droplets. Heat and Mass Transfer, 2010, 46, 665-673.	1.2	0
116	OFEM: An Optimum Finite Element Algorithm for Heat Transfer Problem in Two-dimensional Insulated-tip Rectangular Fin. , 2011, , .		0
117	A Comparison Study on Fuel Properties of Pretreated Pongamia and Jatropha Methyl Esters for C.I. Engine Usage. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2011, 34, 316-323.	1.2	0
118	Natural Convection-Radiation from a Vertical Base-Fin Array with Emissivity Determination. MATEC Web of Conferences, 2014, 13, 02018.	0.1	0
119	A decision-making approach for energy efficiency improvement in municipal water pumps during water scarcity scenario. Energy Efficiency, 2016, 9, 141-151.	1.3	0
120	Nanofluids for Enhanced Solar Thermal Energy Conversion. Topics in Mining, Metallurgy and Materials Engineering, 2017, , 115-148.	1.4	0
121	Natural Convection Heat Transfer of Al2O3 Nanofluid Through Packed Beds. International Journal of Engineering Research & Technology, 2016, V5, .	0.2	0
122	A generalized correlation for the estimation of moisture removal in fruits and grains during hot air drying. International Journal of Heat and Technology, 2017, 35, 426-432.	0.3	0