Stuart M Pitson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954058/publications.pdf

Version: 2024-02-01

41339 54911 7,977 155 49 84 citations h-index g-index papers 163 163 163 7820 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Desmogleinâ€2 expression is an independent predictor of poor prognosis patients with multiple myeloma. Molecular Oncology, 2022, 16, 1221-1240.	4.6	9
2	Resensitising proteasome inhibitor-resistant myeloma with sphingosine kinase 2 inhibition. Neoplasia, 2022, 24, 1-11.	5. 3	12
3	Sphingosine Kinase-1 Is Overexpressed and Correlates with Hypoxia in Osteosarcoma: Relationship with Clinicopathological Parameters. Cancers, 2022, 14, 499.	3.7	O
4	The sphingosine 1-phosphate receptor 2/4 antagonist JTE-013 elicits off-target effects on sphingolipid metabolism. Scientific Reports, 2022, 12, 454.	3.3	8
5	Targeting human CALRâ€mutated MPN progenitors with a neoepitopeâ€directed monoclonal antibody. EMBO Reports, 2022, 23, e52904.	4.5	12
6	Characterising Distinct Migratory Profiles of Infiltrating T-Cell Subsets in Human Glioblastoma. Frontiers in Immunology, 2022, 13, 850226.	4.8	13
7	Ceramide-induced integrated stress response overcomes Bcl-2 inhibitor resistance in acute myeloid leukemia. Blood, 2022, 139, 3737-3751.	1.4	20
8	Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nature Communications, 2022, 13, 2614.	12.8	9
9	Slitâ€Robo signalling establishes a Sphingosineâ€1â€phosphate gradient to polarise fin mesenchyme. EMBO Reports, 2022, 23, .	4.5	4
10	Mechanotransduction activates RhoA in the neighbors of apoptotic epithelial cells to engage apical extrusion. Current Biology, 2021, 31, 1326-1336.e5.	3.9	45
11	3D-printed microplate inserts for long term high-resolution imaging of live brain organoids. BMC Biomedical Engineering, 2021, 3, 6.	2.6	27
12	A Drug Screening Pipeline Using 2D and 3D Patient-Derived In Vitro Models for Pre-Clinical Analysis of Therapy Response in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 4322.	4.1	26
13	Sphingolipids as multifaceted mediators in ovarian cancer. Cellular Signalling, 2021, 81, 109949.	3 . 6	8
14	Integrated in silico and experimental assessment of disease relevance of <i>PCDH19</i> Âmissense variants. Human Mutation, 2021, 42, 1030-1041.	2.5	1
15	The effect of dihydroceramide desaturase 1 inhibition on endothelial impairment induced by indoxyl sulfate. Vascular Pharmacology, 2021, 141, 106923.	2.1	4
16	Sphingolipid imbalance and inflammatory effects induced by uremic toxins in heart and kidney cells are reversed by dihydroceramide desaturase 1 inhibition. Toxicology Letters, 2021, 350, 133-142.	0.8	7
17	Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers, 2020, 12, 111.	3.7	31
18	Endothelial, pericyte and tumor cell expression in glioblastoma identifies fibroblast activation protein (FAP) as an excellent target for immunotherapy. Clinical and Translational Immunology, 2020, 9, e1191.	3.8	34

#	Article	IF	CITATIONS
19	Clinical MDR1 inhibitors enhance Smac-mimetic bioavailability to kill murine LSCs and improve survival in AML models. Blood Advances, 2020, 4, 5062-5077.	5.2	6
20	Sphingosine kinase‑1 predicts overall survival outcomes in non‑small cell lung cancer patients treated with carboplatin and navelbine. Oncology Letters, 2019, 18, 1259-1266.	1.8	24
21	Sphingolipids and the unfolded protein response. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1483-1494.	2.4	20
22	Extracellular and intracellular sphingosineâ€1â€phosphate distinctly regulates exocytosis in chromaffin cells. Journal of Neurochemistry, 2019, 149, 729-746.	3.9	9
23	Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene, 2019, 38, 1151-1165.	5.9	21
24	Identification of sphingosine kinase 1 as a therapeutic target in Bâ€lineage acute lymphoblastic leukaemia. British Journal of Haematology, 2019, 184, 443-447.	2.5	11
25	Kelch-like protein 5-mediated ubiquitination of lysine 183 promotes proteasomal degradation of sphingosine kinase 1. Biochemical Journal, 2019, 476, 3211-3226.	3.7	21
26	In vitro and in vivo roles of sphingosine kinase 2 during dengue virus infection. Journal of General Virology, 2019, 100, 629-641.	2.9	8
27	Resistance to proteasome inhibitors and other targeted therapies in myeloma. British Journal of Haematology, 2018, 182, 11-28.	2.5	78
28	Role of salt bridges in the dimer interface of 14-3-3 \hat{q} in dimer dynamics, N-terminal \hat{l} ±-helical order, and molecular chaperone activity. Journal of Biological Chemistry, 2018, 293, 89-99.	3.4	17
29	The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity. Frontiers in Oncology, 2018, 8, 431.	2.8	267
30	Roles of lysophosphatidic acid and sphingosine-1-phosphate in stem cell biology. Progress in Lipid Research, 2018, 72, 42-54.	11.6	29
31	Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discovery, 2018, 4, 72.	4.7	50
32	Modification of the tumour microenvironment via exosomal shedding of sphingosine 1-phosphate receptor 2 by breast cancer cells. Oncotarget, 2018, 9, 30938-30939.	1.8	2
33	Sphingosine Kinase 2 (SPHK2). , 2018, , 5119-5128.		1
34	Local Sphingosine Kinase 1 Activity Improves Islet Transplantation. Diabetes, 2017, 66, 1301-1311.	0.6	5
35	An Improved Isoform-Selective Assay for Sphingosine Kinase 1 Activity. Methods in Molecular Biology, 2017, 1697, 9-20.	0.9	3
36	Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood, 2017, 129, 2882-2895.	1.4	74

#	Article	IF	CITATIONS
37	Targeting sphingosine kinase 1 induces MCL1-dependent cell death in acute myeloid leukemia. Blood, 2017, 129, 771-782.	1.4	67
38	CIB2 Negatively Regulates Oncogenic Signaling in Ovarian Cancer via Sphingosine Kinase 1. Cancer Research, 2017, 77, 4823-4834.	0.9	29
39	Investigation of sphingosine kinase 1 in interferon responses during dengue virus infection. Clinical and Translational Immunology, 2017, 6, e151.	3.8	7
40	Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD. PLoS ONE, 2017, 12, e0179577.	2.5	23
41	Targeting sphingosine kinase 1 in acute myeloid leukemia: translation to clinic. International Journal of Hematologic Oncology, 2017, 6, 31-34.	1.6	5
42	Intracranial Injection of Dengue Virus Induces Interferon Stimulated Genes and CD8+ T Cell Infiltration by Sphingosine Kinase 1 Independent Pathways. PLoS ONE, 2017, 12, e0169814.	2.5	12
43	Enhancing ER stress in myeloma. Aging, 2017, 9, 1645-1646.	3.1	5
44	Novel therapies for multiple myeloma. Aging, 2017, 9, 1857-1858.	3.1	6
45	Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget, 2017, 8, 43602-43616.	1.8	37
46	The Emerging Role of Sphingolipids in Cancer Stem Cell Biology. Pancreatic Islet Biology, 2017, , 151-170.	0.3	1
47	Examining the Role of Sphingosine Kinaseâ€2 in the Regulation of Endothelial Cell Barrier Integrity. Microcirculation, 2016, 23, 248-265.	1.8	8
48	Topical Application of Fingolimod Perturbs Cutaneous Inflammation. Journal of Immunology, 2016, 196, 3854-3864.	0.8	13
49	14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function. Nature Communications, 2016, 7, 12862.	12.8	49
50	Recent advances in the development of sphingosine kinase inhibitors. Cellular Signalling, 2016, 28, 1349-1363.	3.6	91
51	From Sphingosine Kinase to Dihydroceramide Desaturase: A Structure–Activity Relationship (SAR) Study of the Enzyme Inhibitory and Anticancer Activity of 4-((4-(4-Chlorophenyl)thiazol-2-yl)amino)phenol (SKI-II). Journal of Medicinal Chemistry, 2016, 59, 965-984.	6.4	52
52	Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720. Journal of Leukocyte Biology, 2016, 100, 195-202.	3.3	29
53	Reduction in sphingosine kinase 1 influences the susceptibility to dengue virus infection by altering antiviral responses. Journal of General Virology, 2016, 97, 95-109.	2.9	17
54	Validation of commercially available sphingosine kinase 2 antibodies for use in immunoblotting, immunoprecipitation and immunofluorescence. F1000Research, 2016, 5, 2825.	1.6	6

#	Article	IF	CITATIONS
55	Validation of commercially available sphingosine kinase 2 antibodies for use in immunoblotting, immunoprecipitation and immunofluorescence. F1000Research, 2016, 5, 2825.	1.6	6
56	An oncogenic role for sphingosine kinase 2. Oncotarget, 2016, 7, 64886-64899.	1.8	64
57	Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget, 2016, 7, 16663-16675.	1.8	66
58	Sphingosine kinase 2-deficiency mediated changes in spinal pain processing. Frontiers in Molecular Neuroscience, 2015, 8, 29.	2.9	15
59	Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs. Mediators of Inflammation, 2015, 2015, 1-13.	3.0	16
60	Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor- \hat{l}^3 that regulates neoangiogenesis. FASEB Journal, 2015, 29, 3638-3653.	0.5	75
61	A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis. Developmental Cell, 2015, 35, 759-774.	7.0	33
62	Dengue Virus Infection of Primary Endothelial Cells Induces Innate Immune Responses, Changes in Endothelial Cells Function and Is Restricted by Interferon-Stimulated Responses. Journal of Interferon and Cytokine Research, 2015, 35, 654-665.	1.2	30
63	Sphingolipidsâ€"who's controlling who in disease?. Immunology and Cell Biology, 2015, 93, 767-768.	2.3	2
64	Potential Link between the Sphingosine-1-Phosphate (S1P) System and Defective Alveolar Macrophage Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD). PLoS ONE, 2015, 10, e0122771.	2.5	44
65	A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget, 2015, 6, 7065-7083.	1.8	62
66	Destabilisation of dimeric 14-3-3 proteins as a novel approach to anti-cancer therapeutics. Oncotarget, 2015, 6, 14522-14536.	1.8	30
67	Sphingosine kinase 1 in murine dorsal root ganglia. AIMS Molecular Science, 2015, 2, 22-33.	0.5	1
68	TRAF2 regulates TNF and NF- \hat{l}° B signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. ELife, 2015, 4, .	6.0	75
69	Regulation of EPCs: The Gateway to Blood Vessel Formation. New Journal of Science, 2014, 2014, 1-16.	1.0	4
70	Sphingosine Kinase 2 Promotes Acute Lymphoblastic Leukemia by Enhancing <i>MYC</i> Expression. Cancer Research, 2014, 74, 2803-2815.	0.9	73
71	Reduced sphingosine kinase-1 and enhanced sphingosine 1-phosphate lyase expression demonstrate deregulated sphingosine 1-phosphate signaling in Alzheimer's disease. Acta Neuropathologica Communications, 2014, 2, 12.	5.2	103
72	Regulation of the hepatitis C virus RNA replicase by endogenous lipid peroxidation. Nature Medicine, 2014, 20, 927-935.	30.7	130

#	Article	IF	Citations
73	Structural studies on 14-3-3î¶: Compounds that target the dimer interface. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C808-C808.	0.1	O
74	Sphingosine kinase 1 in viral infections. Reviews in Medical Virology, 2013, 23, 73-84.	8.3	42
75	Targeting sphingosine kinase 2 suppresses MYC expression and kills acute lymphoblastic leukemia cells. Experimental Hematology, 2013, 41, S49.	0.4	0
76	Roles, regulation and inhibitors of sphingosine kinase 2. FEBS Journal, 2013, 280, 5317-5336.	4.7	145
77	Post-translational regulation of sphingosine kinases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 147-156.	2.4	33
78	Protein Kinase Activity of Phosphoinositide 3-Kinase Regulates Cytokine-Dependent Cell Survival. PLoS Biology, 2013, 11, e1001515.	5.6	19
79	Evaluation Of Sphingosine Kinase 1 As a Therapeutic Target In B-Lineage Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1426-1426.	1.4	0
80	Isoform-Selective Assays for Sphingosine Kinase Activity. Methods in Molecular Biology, 2012, 874, 21-31.	0.9	30
81	The GM-CSF receptor family: Mechanism of activation and implications for disease. Growth Factors, 2012, 30, 63-75.	1.7	64
82	Rapid Histamine-Induced Neutrophil Recruitment Is Sphingosine Kinase-1 Dependent. American Journal of Pathology, 2012, 180, 1740-1750.	3.8	27
83	Inhibition kinetics and regulation of sphingosine kinase 1 expression in prostate cancer cells: Functional differences between sphingosine kinase 1a and 1b. International Journal of Biochemistry and Cell Biology, 2012, 44, 1457-1464.	2.8	36
84	Overexpression of Sphingosine Kinase 1 Prevents Ceramide Accumulation and Ameliorates Muscle Insulin Resistance in High-Fat Diet–Fed Mice. Diabetes, 2012, 61, 3148-3155.	0.6	126
85	Sphingosine kinase localization in the control of sphingolipid metabolism. Advances in Enzyme Regulation, 2011, 51, 229-244.	2.6	31
86	Tumour necrosis factor alpha (TNF-Â) stimulation of cells with established dengue virus type 2 infection induces cell death that is accompanied by a reduced ability of TNF-Â to activate nuclear factor ÂB and reduced sphingosine kinase-1 activity. Journal of General Virology, 2011, 92, 807-818.	2.9	45
87	A critical role for the protein phosphatase 2A Bâ \in 2α regulatory subunit in dephosphorylation of sphingosine kinase 1. International Journal of Biochemistry and Cell Biology, 2011, 43, 342-347.	2.8	24
88	Expression profile of the sphingosine kinase signalling system in the lung of patients with chronic obstructive pulmonary disease. Life Sciences, 2011, 89, 806-811.	4.3	27
89	Regulation of Sphingosine Kinase in Hematological Malignancies and Other Cancers. Anti-Cancer Agents in Medicinal Chemistry, $2011, 11, 799-809$.	1.7	23
90	Overâ€Expression of Sphingosine Kinase†Enhances a Progenitor Phenotype in Human Endothelial Cells. Microcirculation, 2011, 18, 583-597.	1.8	12

#	Article	IF	CITATIONS
91	The involvement of sphingosine kinase 1 in LPSâ€induced Tollâ€like receptor 4â€mediated accumulation of HIFâ€1α protein, activation of ASK1 and production of the proâ€inflammatory cytokine ILâ€6. Immunology and Cell Biology, 2011, 89, 268-274.	2.3	59
92	Regulation of sphingosine kinase and sphingolipid signaling. Trends in Biochemical Sciences, 2011, 36, 97-107.	7.5	279
93	The Sphingolipid Rheostat: A Potential Target for Improving Pancreatic Islet Survival and Function. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2011, 11, 262-272.	1.2	30
94	Sphingosine and FTY720 directly bind pro-survival 14-3-3 proteins to regulate their function. Cellular Signalling, 2010, 22, 1291-1299.	3.6	71
95	FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cellular Signalling, 2010, 22, 1536-1542.	3.6	169
96	Intracellular localization of sphingosine kinase 1 alters access to substrate pools but does not affect the degradative fate of sphingosine-1-phosphate. Journal of Lipid Research, 2010, 51, 2546-2559.	4.2	38
97	Translocation of Sphingosine Kinase 1 to the Plasma Membrane Is Mediated by Calcium- and Integrin-binding Protein 1. Journal of Biological Chemistry, 2010, 285, 483-492.	3.4	124
98	Isoflurane Protects Human Kidney Proximal Tubule Cells against Necrosis via Sphingosine Kinase and Sphingosine-1-Phosphate Generation. American Journal of Nephrology, 2010, 31, 353-362.	3.1	51
99	Inhibitors of the Sphingosine Kinase Pathway as Potential Therapeutics. Current Cancer Drug Targets, 2010, 10, 354-367.	1.6	69
100	Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. European Journal of Cancer, 2010, 46, 3417-3424.	2.8	78
101	Tumor Necrosis Factor-Induced Neutrophil Adhesion Occurs Via Sphingosine Kinase-1-Dependent Activation of Endothelial $\hat{l}\pm5\hat{l}^21$ Integrin. American Journal of Pathology, 2010, 177, 436-446.	3.8	33
102	The Sphingosine Kinase 1 Inhibitor 2-(p-Hydroxyanilino)-4-(p-chlorophenyl)thiazole Induces Proteasomal Degradation of Sphingosine Kinase 1 in Mammalian Cells*. Journal of Biological Chemistry, 2010, 285, 38841-38852.	3.4	106
103	Sphingosine kinaseâ€1 compartmentalization drives downstream metabolism of sphingosineâ€1â€phosphate and upstream metabolism of ceramide biosynthesis. FASEB Journal, 2010, 24, 312.2.	0.5	O
104	Serine 225 phosphorylation governs the localization and function of sphingosine kinase 1 in resistance arteries. FASEB Journal, 2010, 24, 777.3.	0.5	0
105	The Phosphorylation Motif at Serine 225 Governs the Localization and Function of Sphingosine Kinase 1 in Resistance Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1916-1922.	2.4	27
106	The effects of markedly raised intracellular sphingosine kinase-1 activity in endothelial cells. Cellular and Molecular Biology Letters, 2009, 14, 411-23.	7.0	8
107	Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells. Cellular and Molecular Biology Letters, 2009, 14, 424-41.	7.0	28
108	The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1. International Journal of Biochemistry and Cell Biology, 2009, 41, 822-827.	2.8	19

7

#	Article	IF	CITATIONS
109	Gαq-mediated plasma membrane translocation of sphingosine kinase-1 and cross-activation of S1P receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 357-370.	2.4	30
110	Sphingosine Kinase-1 Associates with Integrin $\hat{l}\pm V\hat{l}^23$ to Mediate Endothelial Cell Survival. American Journal of Pathology, 2009, 175, 2217-2225.	3.8	18
111	Regulation of Stem Cell Pluripotency and Neural Differentiation by Lysophospholipids. NeuroSignals, 2009, 17, 242-254.	0.9	56
112	Sphingosine kinase regulates the rate of endothelial progenitor cell differentiation. Blood, 2009, 113, 2108-2117.	1.4	45
113	Deactivation of Sphingosine Kinase 1 by Protein Phosphatase 2A. Journal of Biological Chemistry, 2008, 283, 34994-35002.	3.4	48
114	Eukaryotic Elongation Factor 1A Interacts with Sphingosine Kinase and Directly Enhances Its Catalytic Activity. Journal of Biological Chemistry, 2008, 283, 9606-9614.	3.4	45
115	Basal and angiopoietin-1–mediated endothelial permeability is regulated by sphingosine kinase-1. Blood, 2008, 111, 3489-3497.	1.4	86
116	Attenuation of leakiness in doxycycline-inducible expression via incorporation of 3′ AU-rich mRNA destabilizing elements. BioTechniques, 2008, 45, 155-162.	1.8	22
117	The Localization and Activity of Sphingosine Kinase 1 Are Coordinately Regulated with Actin Cytoskeletal Dynamics in Macrophages*. Journal of Biological Chemistry, 2007, 282, 23147-23162.	3.4	32
118	Sphingosine kinase 1 is a critical component of the copper-dependent FGF1 export pathway. Experimental Cell Research, 2007, 313, 3308-3318.	2.6	25
119	Stem cell regulation by lysophospholipids. Prostaglandins and Other Lipid Mediators, 2007, 84, 83-97.	1.9	93
120	Cellular signalling by sphingosine kinase and sphingosine 1-phosphate. IUBMB Life, 2006, 58, 467-472.	3.4	54
121	Lipids as central mediators of cellular signalling. IUBMB Life, 2006, 58, 449-450.	3.4	1
122	Sphingosine kinase functionally links elevated transmural pressure and increased reactive oxygen species formation in resistance arteries. FASEB Journal, 2006, 20, 702-704.	0.5	55
123	The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. Journal of Lipid Research, 2006, 47, 1128-1139.	4.2	113
124	The Calmodulin-binding Site of Sphingosine Kinase and Its Role in Agonist-dependent Translocation of Sphingosine Kinase 1 to the Plasma Membrane. Journal of Biological Chemistry, 2006, 281, 11693-11701.	3.4	68
125	TNF $\hat{l}\pm$ modulates spiral modiolar artery tone via regulation of the endogenous sphingosine kinase 1. FASEB Journal, 2006, 20, A269.	0.5	0
126	The Microvascular Effects of Sphingosine Kinase 1 are Regulated by its Subcellular Localization. FASEB Journal, 2006, 20, A301.	0.5	0

#	Article	IF	Citations
127	Essential Roles of Sphingosineâ€1â€Phosphate and Plateletâ€Derived Growth Factor in the Maintenance of Human Embryonic Stem Cells. Stem Cells, 2005, 23, 1541-1548.	3.2	168
128	Enhancement of intracellular sphingosine-1-phosphate production by inositol 1,4,5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cellular Signalling, 2005, 17, 827-836.	3.6	41
129	Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. Journal of Experimental Medicine, 2005, 201, 49-54.	8.5	253
130	Sphingosine Activates Protein Kinase A Type II by a Novel cAMP-independent Mechanism. Journal of Biological Chemistry, 2005, 280, 26011-26017.	3.4	60
131	Sphingosine Kinase 1 (SK1) Is Recruited to Nascent Phagosomes in Human Macrophages: Inhibition of SK1 Translocation by Mycobacterium tuberculosis. Journal of Immunology, 2005, 174, 3551-3561.	0.8	110
132	An assay for sphingosine kinase activity using biotinylated sphingosine and streptavidin-coated membranes. Analytical Biochemistry, 2004, 331, 122-129.	2.4	23
133	Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO Journal, 2003, 22, 5491-5500.	7.8	484
134	Sphingosine 1-Phosphate and Platelet-derived Growth Factor (PDGF) Act via PDGFÎ ² Receptor-Sphingosine 1-Phosphate Receptor Complexes in Airway Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 6282-6290.	3.4	131
135	Sphingosine Kinase Modulates Microvascular Tone and Myogenic Responses Through Activation of RhoA/Rho Kinase. Circulation, 2003, 108, 342-347.	1.6	129
136	Sphingosine Kinase Transmits Estrogen Signaling in Human Breast Cancer Cells. Molecular Endocrinology, 2003, 17, 2002-2012.	3.7	138
137	Sphingosine Kinase Interacts with TRAF2 and Dissects Tumor Necrosis Factor-α Signaling. Journal of Biological Chemistry, 2002, 277, 7996-8003.	3.4	268
138	The Nucleotide-binding Site of Human Sphingosine Kinase 1. Journal of Biological Chemistry, 2002, 277, 49545-49553.	3.4	99
139	A point mutant of human sphingosine kinase 1 with increased catalytic activity. FEBS Letters, 2001, 509, 169-173.	2.8	18
140	Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochemical Journal, 2000, 350, 429.	3.7	62
141	Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochemical Journal, 2000, 350, 429-441.	3.7	170
142	An oncogenic role of sphingosine kinase. Current Biology, 2000, 10, 1527-1530.	3.9	392
143	Expression of a Catalytically Inactive Sphingosine Kinase Mutant Blocks Agonist-induced Sphingosine Kinase Activation. Journal of Biological Chemistry, 2000, 275, 33945-33950.	3.4	176
144	Induction and carbon source control of extracellular \hat{l}^2 -glucosidase production in Acremonium persicinum. Mycological Research, 1999, 103, 161-167.	2.5	5

#	Article	IF	CITATIONS
145	Intracellular and cell wall associated \hat{l}^2 -glucanases and \hat{l}^2 -glucosidases of Acremonium persicinum. Mycological Research, 1999, 103, 1217-1224.	2.5	2
146	The tricarboxylic acid cycle of Helicobacter pylori. FEBS Journal, 1999, 260, 258-267.	0.2	91
147	Stereochemical Course of Hydrolysis Catalysed by \hat{l}_{\pm} -l-Rhamnosyl and \hat{l}_{\pm} -d-Galacturonosyl Hydrolases from Aspergillus aculeatus. Biochemical and Biophysical Research Communications, 1998, 242, 552-559.	2.1	27
148	Rhamnogalacturonan α-d-Galactopyranosyluronohydrolase1. Plant Physiology, 1998, 117, 153-163.	4.8	55
149	Effect of carbon source on extracellular (1â€,â†'â€,3)- and (1â€,â†'â€,6)-β-glucanase production by <i>Acremoniu persicinum</i> /i>. Canadian Journal of Microbiology, 1997, 43, 432-439.	m _{1.7}	23
150	Purification and characterization of an extracellular \hat{l}^2 -glucosidase from the filamentous fungus Acremonium persicinum and its probable role in \hat{l}^2 -glucan degradation. Enzyme and Microbial Technology, 1997, 21, 182-190.	3.2	45
151	Action patterns and mapping of the substrate-binding regions of endo-(1 → 5)-α-l-arabinanases from Aspergillus niger and Aspergillus aculeatus. Carbohydrate Research, 1997, 303, 207-218.	2.3	24
152	Stereochemical course of hydrolysis catalyzed by arabinofuranosyl hydrolases. FEBS Letters, 1996, 398, 7-11.	2.8	56
153	Purification and characterization of an extracellular (1 \hat{a} † 6)- \hat{l}^2 -glucanase from the filamentous fungus Acremonium persicinum. Biochemical Journal, 1996, 316, 841-846.	3.7	39
154	Proteolytic inactivation of an extracellular (1 \tilde{A} ¢ \hat{A} † \hat{A} ' 3)- \tilde{A} Ž \hat{A} ² -glucanase from the fungusAcremonium persicinumis associated with growth at neutral or alkaline medium pH. FEMS Microbiology Letters, 1996, 145, 287-293.	1.8	9
155	The MCL-1 inhibitor S63845: an exciting new addition to the armoury of anti-cancer agents. Journal of Xiangya Medicine, 0, 2, 53-53.	0.2	3