
Geoffrey Masuyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Analysis of Botulinum Neurotoxins Type B and E by Cryo-EM. Toxins, 2022, 14, 14.	3.4	5
2	Small-molecule activation of OGC1 increases oxidative DNA damage repair by gaining a new function. Science, 2022, 376, 1471-1476.	12.6	20
3	Mechanism of Ganglioside Receptor Recognition by Botulinum Neurotoxin Serotype E. International Journal of Molecular Sciences, 2021, 22, 8315.	4.1	5
4	Structural and Biochemical Characterization of Botulinum Neurotoxin Subtype B2 Binding to Its Receptors. Toxins, 2020, 12, 603.	3.4	6
5	Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Research, 2020, 48, 12234-12251.	14.5	29
6	Crystal Structure of Exotoxin A from Aeromonas Pathogenic Species. Toxins, 2020, 12, 397.	3.4	6
7	Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy. PLoS Biology, 2020, 18, e3000618.	5.6	18
8	A neurotoxin that specifically targets Anopheles mosquitoes. Nature Communications, 2019, 10, 2869.	12.8	50
9	Structural basis for the interaction of the chaperone Cbp3 with newly synthesized cytochrome b during mitochondrial respiratory chain assembly. Journal of Biological Chemistry, 2019, 294, 16663-16671.	3.4	6
10	Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models. Science Advances, 2019, 5, eaau7196.	10.3	29
11	Crystal structure of the catalytic domain of the <i>Weissella oryzae</i> botulinumâ€kke toxin. FEBS Letters, 2019, 593, 1403-1410.	2.8	8
12	Botulinum and Tetanus Neurotoxins. Annual Review of Biochemistry, 2019, 88, 811-837.	11.1	140
13	Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host and Microbe, 2018, 23, 169-176.e6.	11.0	127
14	Structural characterisation of the catalytic domain of botulinum neurotoxin X - high activity and unique substrate specificity. Scientific Reports, 2018, 8, 4518.	3.3	30
15	Mechanism of Peptide Binding and Cleavage by the Human Mitochondrial Peptidase Neurolysin. Journal of Molecular Biology, 2018, 430, 348-362.	4.2	29
16	Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science, 2018, 362, 834-839.	12.6	156
17	Crystal Structure of Botulinum Neurotoxin A2 in Complex with the Human Protein Receptor SV2C Reveals Plasticity in Receptor Binding. Toxins, 2018, 10, 153.	3.4	14
18	Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. Journal of the American Chemical Society, 2017, 139, 218-230.	13.7	50

GEOFFREY MASUYER

#	Article	lF	CITATIONS
19	Identification and characterization of a novel botulinum neurotoxin. Nature Communications, 2017, 8, 14130.	12.8	196
20	The structure of the tetanus toxin reveals <scp>pH</scp> â€mediated domain dynamics. EMBO Reports, 2017, 18, 1306-1317.	4.5	61
21	Crystal structure of a peptidylâ€dipeptidase Kâ€26â€DCP from <i>Actinomycete</i> in complex with its natural inhibitor. FEBS Journal, 2016, 283, 4357-4369.	4.7	6
22	Kinetic and structural characterization of amyloidâ€Î² peptide hydrolysis by human angiotensinâ€1â€converting enzyme. FEBS Journal, 2016, 283, 1060-1076.	4.7	19
23	NUDT15 Hydrolyzes 6-Thio-DeoxyGTP to Mediate the Anticancer Efficacy of 6-Thioguanine. Cancer Research, 2016, 76, 5501-5511.	0.9	96
24	Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors. Scientific Reports, 2015, 5, 13397.	3.3	12
25	Structural basis of Ac-SDKP hydrolysis by Angiotensin-I converting enzyme. Scientific Reports, 2015, 5, 13742.	3.3	18
26	Structural basis of multivalent galactoseâ€based dendrimer recognition by human galectinâ€7. FEBS Journal, 2015, 282, 372-387.	4.7	13
27	Fragment-based design for the development of N-domain-selective angiotensin-1-converting enzyme inhibitors. Clinical Science, 2014, 126, 305-313.	4.3	36
28	Absence of cell surface expression of human ACE leads to perinatal death. Human Molecular Genetics, 2014, 23, 1479-1491.	2.9	14
29	Engineered Botulinum Neurotoxins as New Therapeutics. Annual Review of Pharmacology and Toxicology, 2014, 54, 27-51.	9.4	55
30	Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence. Biological Chemistry, 2014, 395, 1135-1149.	2.5	43
31	Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE). Journal of Biological Chemistry, 2014, 289, 1798-1814.	3.4	29
32	Crystal structures of highly specific phosphinic tripeptide enantiomers in complex with the angiotensinâ€ <scp>l</scp> converting enzyme. FEBS Journal, 2014, 281, 943-956.	4.7	27
33	Interkingdom Pharmacology of Angiotensin-I Converting Enzyme Inhibitor Phosphonates Produced by Actinomycetes. ACS Medicinal Chemistry Letters, 2014, 5, 346-351.	2.8	26
34	Structure Based Drug Design of Angiotensin-I Converting Enzyme Inhibitors. Current Medicinal Chemistry, 2012, 19, 845-855.	2.4	47
35	Structural basis of peptide recognition by the angiotensinâ€1 converting enzyme homologue An <scp>CE</scp> from <i><scp>D</scp>rosophilaÂmelanogaster</i> . FEBS Journal, 2012, 279, 4525-4534.	4.7	21
36	Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Scientific Reports, 2012, 2, 717.	3.3	127

GEOFFREY MASUYER

#	Article	IF	CITATIONS
37	Inhibition mechanism of human galectinâ€7 by a novel galactoseâ€benzylphosphate inhibitor. FEBS Journal, 2012, 279, 193-202.	4.7	18
38	Engineering botulinum neurotoxin domains for activation by toxin light chain. FEBS Journal, 2012, 279, 515-523.	4.7	13
39	Structure and activity of a functional derivative of Clostridium botulinum neurotoxin B. Journal of Structural Biology, 2011, 174, 52-57.	2.8	21
40	Structural characterization of angiotensin lâ€converting enzyme in complex with a selenium analogue of captopril. FEBS Journal, 2011, 278, 3644-3650.	4.7	33
41	Structures of engineered <i>Clostridium botulinum</i> neurotoxin derivatives. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1466-1472.	0.7	9
42	Isolation and pharmacological characterization of AdTx1, a natural peptide displaying specific insurmountable antagonism of the α _{1A} â€adrenoceptor. British Journal of Pharmacology, 2010, 159, 316-325.	5.4	43
43	Identification of a novel snake peptide toxin displaying high affinity and antagonist behaviour for the α ₂ â€adrenoceptors. British Journal of Pharmacology, 2010, 161, 1361-1374.	5.4	36
44	Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A. Biochemical and Biophysical Research Communications, 2009, 381, 50-53.	2.1	23