List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954026/publications.pdf Version: 2024-02-01

NENAD RAN

#	Article	IF	CITATIONS
1	Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
2	Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting. Science, 2022, 375, 839-844.	6.0	43
3	Mechanisms and regulation of protein synthesis in mitochondria. Nature Reviews Molecular Cell Biology, 2021, 22, 307-325.	16.1	170
4	Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER. Science Advances, 2021, 7, .	4.7	14
5	Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science, 2021, 372, 1306-1313.	6.0	165
6	Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Molecular Cell, 2021, 81, 2566-2582.e6.	4.5	32
7	Stepwise maturation of the peptidyl transferase region of human mitoribosomes. Nature Communications, 2021, 12, 3671.	5.8	25
8	Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein. Science, 2021, 372, 1220-1224.	6.0	53
9	Structural basis of successive adenosine modifications by the conserved ribosomal methyltransferase KsgA. Nucleic Acids Research, 2021, 49, 6389-6398.	6.5	16
10	Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Cell Reports, 2021, 36, 109350.	2.9	23
11	Structures of prokaryotic ubiquitin-like protein Pup in complex with depupylase Dop reveal the mechanism of catalytic phosphate formation. Nature Communications, 2021, 12, 6635.	5.8	3
12	Transcriptional control of mycobacterial DNA damage response by sigma adaptation. Science Advances, 2021, 7, eabl4064.	4.7	10
13	Structural Insights into the Mechanism of Mitoribosomal Large Subunit Biogenesis. Molecular Cell, 2020, 79, 629-644.e4.	4.5	54
14	Gene- and Species-Specific Hox mRNA Translation by Ribosome Expansion Segments. Molecular Cell, 2020, 80, 980-995.e13.	4.5	42
15	The 3.2-Ã resolution structure of human mTORC2. Science Advances, 2020, 6, .	4.7	57
16	SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nature Structural and Molecular Biology, 2020, 27, 959-966.	3.6	432
17	Structural insights into mammalian mitochondrial translation elongation catalyzed by mt <scp>EFG</scp> 1. EMBO Journal, 2020, 39, e104820.	3.5	33
18	Early Scanning of Nascent Polypeptides inside the Ribosomal Tunnel by NAC. Molecular Cell, 2019, 75, 996-1006.e8.	4.5	60

#	Article	IF	CITATIONS
19	Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nature Communications, 2019, 10, 4653.	5.8	23
20	Extensions, Extra Factors, and Extreme Complexity: Ribosomal Structures Provide Insights into Eukaryotic Translation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032367.	2.3	20
21	Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science, 2019, 365, 1144-1149.	6.0	61
22	The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nature Structural and Molecular Biology, 2019, 26, 919-929.	3.6	25
23	Structure of a eukaryotic cytoplasmic preâ€40S ribosomal subunit. EMBO Journal, 2018, 37, .	3.5	85
24	High-resolution structures of mitochondrial ribosomes and their functional implications. Current Opinion in Structural Biology, 2018, 49, 44-53.	2.6	45
25	Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex. Science, 2018, 360, 323-327.	6.0	47
26	Thomas Steitz 1940–2018. Nature Structural and Molecular Biology, 2018, 25, 1065-1066.	3.6	0
27	Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science, 2018, 362, .	6.0	107
28	Dissecting ribosomal particles throughout the kingdoms of life using advanced hybrid mass spectrometry methods. Nature Communications, 2018, 9, 2493.	5.8	67
29	Architecture of the human mTORC2 core complex. ELife, 2018, 7, .	2.8	59
30	Conformational Switching of the Nuclear Exosome during Ribosome Biogenesis. Biochemistry, 2018, 57, 4765-4766.	1.2	3
31	Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature, 2018, 560, 263-267.	13.7	96
32	Depupylase Dop Requires Inorganic Phosphate in the Active Site for Catalysis. Journal of Biological Chemistry, 2017, 292, 4044-4053.	1.6	15
33	Structure and assembly of scalable porous protein cages. Nature Communications, 2017, 8, 14663.	5.8	102
34	Eukaryotic aspects of translation initiation brought into focus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160186.	1.8	35
35	Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome. Nature Communications, 2017, 8, 15470.	5.8	52
36	The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO Journal, 2017, 36, 475-486.	3.5	132

#	Article	IF	CITATIONS
37	Structural and Functional Insights into Human Re-initiation Complexes. Molecular Cell, 2017, 67, 447-456.e7.	4.5	68
38	The Complete Structure of the Mycobacterium smegmatis 70S Ribosome. Cell Reports, 2017, 20, 149-160.	2.9	63
39	Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome. Structure, 2016, 24, 2138-2151.	1.6	22
40	Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nature Communications, 2016, 7, 10471.	5.8	88
41	Architecture of human mTOR complex 1. Science, 2016, 351, 48-52.	6.0	280
42	Structure and Function of the Mitochondrial Ribosome. Annual Review of Biochemistry, 2016, 85, 103-132.	5.0	199
43	Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation. Cell, 2016, 164, 91-102.	13.5	97
44	Structure of a Yeast 40S–elF1–elF1A–elF3–elF3j initiation complex. Nature Structural and Molecular Biology, 2015, 22, 269-271.	3.6	92
45	Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Ã resolution. Nature Communications, 2015, 6, 7646.	5.8	112
46	The complete structure of the 55 <i>S</i> mammalian mitochondrial ribosome. Science, 2015, 348, 303-308.	6.0	344
47	A new system for naming ribosomal proteins. Current Opinion in Structural Biology, 2014, 24, 165-169.	2.6	481
48	Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature, 2014, 505, 515-519.	13.7	207
49	The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature, 2014, 515, 283-286.	13.7	231
50	Molecular Architecture of the 40Sâ‹elF1â‹elF3 Translation Initiation Complex. Cell, 2014, 158, 1123-1135.	13.5	193
51	The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A. Nature Structural and Molecular Biology, 2013, 20, 1015-1017.	3.6	72
52	The Structural Basis of FtsY Recruitment and GTPase Activation by SRP RNA. Molecular Cell, 2013, 52, 643-654.	4.5	44
53	Crystal Structure of the Complex between Prokaryotic Ubiquitin-like Protein and Its Ligase PafA. Journal of the American Chemical Society, 2013, 135, 6794-6797.	6.6	28
54	Crystal Structure of the Yeast Ribosomal Protein rpS3 in Complex with Its Chaperone Yar1. Journal of Molecular Biology, 2013, 425, 4154-4160.	2.0	34

#	Article	IF	CITATIONS
55	Structural insights into eukaryotic ribosomes and the initiation of translation. Current Opinion in Structural Biology, 2012, 22, 768-777.	2.6	40
56	Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis. Journal of Biological Chemistry, 2012, 287, 10453-10459.	1.6	73
57	Structures of Pup ligase PafA and depupylase Dop from the prokaryotic ubiquitin-like modification pathway. Nature Communications, 2012, 3, 1014.	5.8	58
58	Atomic structures of the eukaryotic ribosome. Trends in Biochemical Sciences, 2012, 37, 189-198.	3.7	158
59	Crystal Structure of the Eukaryotic 40 <i>S</i> Ribosomal Subunit in Complex with Initiation Factor 1. Science, 2011, 331, 730-736.	6.0	420
60	Crystal Structure of the Eukaryotic 60 <i>S</i> Ribosomal Subunit in Complex with Initiation Factor 6. Science, 2011, 334, 941-948.	6.0	330
61	Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nature Structural and Molecular Biology, 2011, 18, 88-90.	3.6	69
62	The Crystal Structure of the Signal Recognition Particle in Complex with Its Receptor. Science, 2011, 331, 881-886.	6.0	132
63	The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Structural and Molecular Biology, 2009, 16, 589-597.	3.6	420
64	Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature, 2004, 431, 590-596.	13.7	347
65	L23 protein functions as a chaperone docking site on the ribosome. Nature, 2002, 419, 171-174.	13.7	309