Shiva Malek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6953827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 2010, 464, 431-435.	27.8	1,451
2	The Crystal Structure of the lκBα/NF-κB Complex Reveals Mechanisms of NF-κB Inactivation. Cell, 1998, 95, 759-770.	28.9	592
3	RAS-targeted therapies: is the undruggable drugged?. Nature Reviews Drug Discovery, 2020, 19, 533-552.	46.4	569
4	Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5299-5304.	7.1	526
5	Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature, 2013, 501, 232-236.	27.8	270
6	Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nature Chemical Biology, 2016, 12, 779-786.	8.0	180
7	Structure of the BRAF-MEK Complex Reveals a Kinase Activity Independent Role for BRAF in MAPK Signaling. Cancer Cell, 2014, 26, 402-413.	16.8	173
8	Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2. Cancer Cell, 2016, 29, 477-493.	16.8	171
9	lκBβ, but Not lκBα, Functions as a Classical Cytoplasmic Inhibitor of NF-κB Dimers by Masking Both NF-κB Nuclear Localization Sequences in Resting Cells. Journal of Biological Chemistry, 2001, 276, 45225-45235.	3.4	152
10	lκBα Functions through Direct Contacts with the Nuclear Localization Signals and the DNA Binding Sequences of NF-κB. Journal of Biological Chemistry, 1998, 273, 25427-25435.	3.4	148
11	Mechanism of κB DNA binding by Rel/NF-κB dimers. Journal of Biological Chemistry, 2000, 275, 24392-24399.	3.4	120
12	X-ray Crystal Structure of an lκBβ·NF-κB p65 Homodimer Complex. Journal of Biological Chemistry, 2003, 278, 23094-23100.	3.4	107
13	Noncovalent Wild-type–Sparing Inhibitors of EGFR T790M. Cancer Discovery, 2013, 3, 168-181.	9.4	87
14	Identification of substituted 2-thio-6-oxo-1,6-dihydropyrimidines as inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3186-3194.	2.2	72
15	Structure of C.cntdot.T.cntdot.A triplet in an intramolecular DNA triplex. Biochemistry, 1992, 31, 4838-4846.	2.5	71
16	Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nature Structural and Molecular Biology, 2020, 27, 134-141.	8.2	66
17	ARAF mutations confer resistance to the RAF inhibitor belvarafenib in melanoma. Nature, 2021, 594, 418-423.	27.8	64
18	Discovery of XL888: A novel tropane-derived small molecule inhibitor of HSP90. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5396-5404.	2.2	57

Shiva Malek

#	Article	IF	CITATIONS
19	Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation. Journal of Medicinal Chemistry, 2014, 57, 10176-10191.	6.4	53
20	Identification of 2-amino-5-aryl-pyrazines as inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5533-5539.	2.2	52
21	Identification of Preferred Chemotherapeutics for Combining with a <i>CHK1</i> Inhibitor. Molecular Cancer Therapeutics, 2013, 12, 2285-2295.	4.1	52
22	Pharmacological Induction of RAS-GTP Confers RAF Inhibitor Sensitivity in KRAS Mutant Tumors. Cancer Cell, 2018, 34, 611-625.e7.	16.8	51
23	Discovery and Biological Profiling of Potent and Selective mTOR Inhibitor GDC-0349. ACS Medicinal Chemistry Letters, 2013, 4, 103-107.	2.8	43
24	Noncovalent Mutant Selective Epidermal Growth Factor Receptor Inhibitors: A Lead Optimization Case Study. Journal of Medicinal Chemistry, 2015, 58, 8877-8895.	6.4	43
25	4-Aminoindazolyl-dihydrofuro[3,4- d]pyrimidines as non-covalent inhibitors of mutant epidermal growth factor receptor tyrosine kinase. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 534-539.	2.2	42
26	Cell Active Hydroxylactam Inhibitors of Human Lactate Dehydrogenase with Oral Bioavailability in Mice. ACS Medicinal Chemistry Letters, 2016, 7, 896-901.	2.8	41
27	Targeting the MAPK Pathway in RAS Mutant Cancers. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031492.	6.2	41
28	RTK-Dependent Inducible Degradation of Mutant PI3Kα Drives GDC-0077 (Inavolisib) Efficacy. Cancer Discovery, 2022, 12, 204-219.	9.4	40
29	Identification of substituted 3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3764-3771.	2.2	37
30	Combination Drug Scheduling Defines a "Window of Opportunity―for Chemopotentiation of Gemcitabine by an Orally Bioavailable, Selective ChK1 Inhibitor, GNE-900. Molecular Cancer Therapeutics, 2013, 12, 1968-1980.	4.1	34
31	Pyridones as Highly Selective, Noncovalent Inhibitors of T790M Double Mutants of EGFR. ACS Medicinal Chemistry Letters, 2016, 7, 100-104.	2.8	29
32	Dimerization Induced by C-Terminal 14–3–3 Binding Is Sufficient for BRAF Kinase Activation. Biochemistry, 2020, 59, 3982-3992.	2.5	29
33	Pyrimidoaminotropanes as Potent, Selective, and Efficacious Small Molecule Kinase Inhibitors of the Mammalian Target of Rapamycin (mTOR). Journal of Medicinal Chemistry, 2013, 56, 3090-3101.	6.4	28
34	Potent, Selective, and Orally Bioavailable Inhibitors of the Mammalian Target of Rapamycin Kinase Domain Exhibiting Single Agent Antiproliferative Activity. Journal of Medicinal Chemistry, 2012, 55, 10958-10971.	6.4	27
35	A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5097-5104.	2.2	26
36	Machine-Learning and Chemicogenomics Approach Defines and Predicts Cross-Talk of Hippo and MAPK Pathways. Cancer Discovery, 2021, 11, 778-793.	9.4	26

Shiva Malek

#	Article	IF	CITATIONS
37	Potent, Selective, and Orally Bioavailable Inhibitors of Mammalian Target of Rapamycin (mTOR) Kinase Based on a Quaternary Substituted Dihydrofuropyrimidine. Journal of Medicinal Chemistry, 2011, 54, 3426-3435.	6.4	25
38	Emerging Trends in Cancer Drug Discovery—From Drugging the "Undruggable―to Overcoming Resistance. Cancer Discovery, 2021, 11, 815-821.	9.4	24
39	Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 75-82.	2.2	18
40	CRAF dimerization with ARAF regulates KRAS-driven tumor growth. Cell Reports, 2022, 38, 110351.	6.4	18
41	Identification of 3,6-disubstituted dihydropyrones as inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5683-5687.	2.2	17
42	Targeting KRAS Mutant Cancers via Combination Treatment: Discovery of a 5-Fluoro-4-(3 <i>H</i>)-quinazolinone Aryl Urea pan-RAF Kinase Inhibitor. Journal of Medicinal Chemistry, 2021, 64, 3940-3955.	6.4	17
43	Preparation and Crystallization of Dynamic NF-κB·IκB Complexes. Journal of Biological Chemistry, 2000, 275, 32800-32806.	3.4	16
44	Discovery of a Noncovalent, Mutant-Selective Epidermal Growth Factor Receptor Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 9080-9093.	6.4	16
45	Discovery of the 1,7-diazacarbazole class of inhibitors of checkpoint kinase 1. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5704-5709.	2.2	14
46	Mitigation of Acetylcholine Esterase Activity in the 1,7-Diazacarbazole Series of Inhibitors of Checkpoint Kinase 1. Journal of Medicinal Chemistry, 2015, 58, 5053-5074.	6.4	14
47	RAS-targeted therapies. Nature Reviews Drug Discovery, 2021, , .	46.4	14
48	The promise and peril of KRAS G12C inhibitors. Cancer Cell, 2021, 39, 1059-1061.	16.8	10
49	The RAS/MAPK Axis Gets Stressed Out. Molecular Cell, 2016, 64, 854-855.	9.7	7
50	Tissue-Specific Mutations in BRAF and EGFR Necessitate Unique Therapeutic Approaches. Trends in Cancer, 2016, 2, 699-701.	7.4	4
51	Targeting KRAS Mutant Cancers via Combination Treatment: Discovery of a Pyridopyridazinone pan-RAF Kinase Inhibitor. ACS Medicinal Chemistry Letters, 2021, 12, 791-797.	2.8	3
52	Partners in Crime: Clandestine Operations among RAS-RAF Accomplices in Promoting Tumorigenesis. Molecular Cell, 2019, 76, 853-855.	9.7	1
53	Biology, technology and a bit of serendipity: an interview with Shiva Malek. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	1
54	A Plate-Based Assay to Measure Cellular ERK Substrate Phosphorylation: Utility for Drug Discovery of the MAPK-Signaling Cascade. Assay and Drug Development Technologies, 2010, 8, 497-503.	1.2	0

#	Article	IF	CITATIONS
55	A BRAFâ€MEK complex reveals the molecular basis of oncogenic mutations. FASEB Journal, 2013, 27, 1031.11.	0.5	0
56	Structure-based optimization of hydroxylactam as potent, cell-active inhibitors of lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128576.	2.2	0