Peiguang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6953746/publications.pdf

Version: 2024-02-01

41 papers

1,744 citations

18 h-index 315357 38 g-index

42 all docs 42 docs citations

times ranked

42

2713 citing authors

#	Article	IF	CITATIONS
1	Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS Nano, 2020, 14, 7970-7986.	7.3	204
2	Enhancement of Ethanol Vapor Sensing of TiO ₂ Nanobelts by Surface Engineering. ACS Applied Materials & Interfaces, 2010, 2, 3263-3269.	4.0	188
3	Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance. Journal of Materials Chemistry, 2011, 21, 7937.	6.7	142
4	Monitoring Plant Health with Near-Infrared Fluorescent H ₂ O ₂ Nanosensors. Nano Letters, 2020, 20, 2432-2442.	4.5	142
5	Nano-p–n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity. Journal of Materials Chemistry, 2011, 21, 5106.	6.7	114
6	Phase transformation of TiO2 nanobelts and TiO2(B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity. CrystEngComm, 2011, 13, 6643.	1.3	107
7	Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature Communications, 2020, 11, 2045.	5.8	107
8	Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano, 2020, 7, 2214-2228.	2.2	97
9	Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures. Applied Surface Science, 2012, 258, 9805-9809.	3.1	95
10	Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media. Nanoscale, 2015, 7, 9627-9636.	2.8	71
11	Surface Functionalization of Metal Nanoparticles by Conjugated Metal–Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer. Accounts of Chemical Research, 2016, 49, 2251-2260.	7.6	63
12	Nanopaper based on Ag/TiO2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants. Journal of Hazardous Materials, 2011, 197, 19-25.	6.5	56
13	High ethanol sensitivity of Palladium/TiO2 nanobelt surface heterostructures dominated by enlarged surface area and nano-Schottky junctions. Journal of Colloid and Interface Science, 2012, 388, 144-150.	5.0	40
14	Gold core@silver semishell Janus nanoparticles prepared by interfacial etching. Nanoscale, 2016, 8, 14565-14572.	2.8	33
15	Enhanced antimicrobial activity with faceted silver nanostructures. Journal of Materials Science, 2015, 50, 2849-2858.	1.7	26
16	Intervalence Charge Transfer of Ruthenium–Nitrogen Moieties Embedded within Nitrogen-Doped Graphene Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 13303-13309.	1.5	25
17	Electrocatalytic oxidation of nucleobases by TiO2 nanobelts. Physical Chemistry Chemical Physics, 2011, 13, 9232.	1.3	20
18	Multifunctional grapheneâ€based nanostructures for efficient electrocatalytic reduction of oxygen. Journal of Chemical Technology and Biotechnology, 2015, 90, 2132-2151.	1.6	20

#	Article	IF	Citations
19	Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes. Langmuir, 2016, 32, 4297-4304.	1.6	19
20	Platinum nanoparticles encapsulated in nitrogen-doped graphene quantum dots: Enhanced electrocatalytic reduction of oxygen by nitrogen dopants. International Journal of Hydrogen Energy, 2017, 42, 29192-29200.	3.8	18
21	Interfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates. Physical Chemistry Chemical Physics, 2014, 16, 18736-18742.	1.3	16
22	Silicene Quantum Dots: Synthesis, Spectroscopy, and Electrochemical Studies. Langmuir, 2018, 34, 2834-2840.	1.6	16
23	Platinum Nanoparticles Functionalized with Ethynylphenylboronic Acid Derivatives: Selective Manipulation of Nanoparticle Photoluminescence by Fluoride Ions. Langmuir, 2014, 30, 5224-5229.	1.6	14
24	Identification of the formation of metal–vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling. Chemical Communications, 2016, 52, 11631-11633.	2.2	14
25	Enhancement of selective determination of the perfect match and mismatch of single nucleobases with a biosensing electrode based on surface-coarsened anatase TiO2 nanobelts. Journal of Materials Chemistry, 2011, 21, 10633.	6.7	13
26	Nanoparticleâ€Mediated Intervalence Charge Transfer: Coreâ€Size Effects. Angewandte Chemie - International Edition, 2016, 55, 1455-1459.	7.2	12
27	"Size-Independent―Single-Electron Tunneling. Journal of Physical Chemistry Letters, 2015, 6, 4986-4990.	2.1	11
28	Self-Assembly and Chemical Reactivity of Alkenes on Platinum Nanoparticles. Langmuir, 2015, 31, 522-528.	1.6	11
29	Electrocatalytic Activity of Organically Functionalized Silver Nanoparticles in Oxygen Reduction. Science of Advanced Materials, 2013, 5, 1727-1736.	0.1	11
30	Ruthenium Nanoparticles Stabilized by the Self-Assembly of Acetylene, Carboxylate, and Thiol Derivatives. Science of Advanced Materials, 2014, 6, 1060-1067.	0.1	9
31	Chemical Reactivity of Naphthalenecarboxylate-Protected Ruthenium Nanoparticles: Intraparticle Charge Delocalization Derived from Interfacial Decarboxylation. Journal of Physical Chemistry C, 2015, 119, 15449-15454.	1.5	7
32	Effects of para-substituents of styrene derivatives on their chemical reactivity on platinum nanoparticle surfaces. Nanoscale, 2016, 8, 12013-12021.	2.8	7
33	Intraparticle donor–acceptor dyads prepared using conjugated metal–ligand linkages. Physical Chemistry Chemical Physics, 2013, 15, 17647.	1.3	5
34	Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes. Environmental Science: Nano, 2022, 9, 2691-2703.	2.2	4
35	Nanoparticleâ€Mediated Intervalence Charge Transfer: Coreâ€6ize Effects. Angewandte Chemie, 2016, 128, 1477-1481.	1.6	2
36	Ruthenium nanoparticles cofunctionalized with acetylene derivatives of coumarin and perylene: dyad-like intraparticle charge transfer. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	2

PEIGUANG HU

#	Article	IF	CITATIONS
37	Peptide-mediated Targeting of Nanoparticles with Chemical Cargoes to Chloroplasts in Arabidopsis Plants. Bio-protocol, 2021, 11, e4060.	0.2	2
38	Covalent Crosslinking of Graphene Quantum Dots by McMurry Deoxygenation Coupling. Chemistry - an Asian Journal, 2017, 12, 973-977.	1.7	1
39	Symmetry breaking in optimal timing of traffic signals on an idealized two-way street. Physical Review E, 2013, 88, 032801.	0.8	O
40	Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial Engineering. Nanostructure Science and Technology, 2016, , 281-307.	0.1	0
41	Silver–Copper Hollow Nanoshells as Phaseâ€Transfer Reagents and Catalysts in the Reduction of 4â€Nitroaniline. Particle and Particle Systems Characterization, 2017, 34, 1600358.	1.2	0