
Hai-Jiao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6953600/publications.pdf Version: 2024-02-01

Ηλι-ΙΙΛΟ ΜΛΝΟ

#	Article	IF	CITATIONS
1	Novel yellow solid-state fluorescent-emitting carbon dots with high quantum yield for white light-emitting diodes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119340.	3.9	19
2	Amphiphilic BODIPY-based nanoparticles as "light-up―fluorescent probe for PAEs detection by an aggregation/disaggregation approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119492.	3.9	5
3	Zn(II)-DPA Coordinative fluorescent probe for enhancing G4 DNA binding. Dyes and Pigments, 2021, 195, 109707.	3.7	1
4	The facile preparation of solid-state fluorescent carbon dots with a high fluorescence quantum yield and their application in rapid latent fingerprint detection. Dalton Transactions, 2021, 50, 12188-12196.	3.3	10
5	Gene augmented nuclear-targeting sonodynamic therapy via Nrf2 pathway-based redox balance adjustment boosts peptide-based anti-PD-L1 therapy on colorectal cancer. Journal of Nanobiotechnology, 2021, 19, 347.	9.1	25
6	Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale, 2019, 11, 12973-12982.	5.6	50
7	Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes. Dyes and Pigments, 2019, 170, 107623.	3.7	47
8	Photoluminescent F-doped carbon dots prepared by ring-opening reaction for gene delivery and cell imaging. RSC Advances, 2018, 8, 6053-6062.	3.6	45
9	A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties. Royal Society Open Science, 2018, 5, 180245.	2.4	52
10	Hyaluronic acid-based carbon dots for efficient gene delivery and cell imaging. RSC Advances, 2017, 7, 15613-15624.	3.6	53
11	Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery. Nanoscale, 2017, 9, 5935-5947.	5.6	63
12	Hydroxyl-containing non-viral lipidic gene vectors with macrocyclic polyamine headgroups. RSC Advances, 2015, 5, 59417-59427.	3.6	10
13	Bioreducible cross-linked polymers based on G1 peptide dendrimer as potential gene delivery vectors. European Journal of Medicinal Chemistry, 2014, 87, 413-420.	5.5	18
14	Cyclen-based cationic lipids with double hydrophobic tails for efficient gene delivery. Biomaterials Science, 2014, 2, 1460-1470.	5.4	26