Martin Booth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6953389/publications.pdf

Version: 2024-02-01

189 papers 7,712 citations

42 h-index 81 g-index

205 all docs

205
docs citations

205 times ranked 5213 citing authors

#	Article	IF	Citations
1	Wavefrontâ€sensorless adaptive optics with a laserâ€free spinning disk confocal microscope. Journal of Microscopy, 2022, 288, 106-116.	0.8	12
2	Repeated imaging through a multimode optical fiber using adaptive optics. Biomedical Optics Express, 2022, 13, 662.	1.5	2
3	3D Switchable Diffractive Optical Elements Fabricated with Twoâ€Photon Polymerization. Advanced Optical Materials, 2022, 10, .	3.6	16
4	Enhancing polarisation imaging through novel polarimetry and adaptive optics. , 2022, , .		1
5	Computational super-resolution imaging with multimode fiber using optimized illuminations. , 2022, , .		O
6	Generalised adaptive optics method for high-NA aberration-free refocusing in refractive-index-mismatched media. Optics Express, 2022, 30, 11809.	1.7	4
7	Efficient and versatile aberration correction through sensorless adaptive optics. , 2022, , .		O
8	Revealing complex optical phenomena through vectorial metrics. Advanced Photonics, 2022, 4, .	6.2	27
9	SenAOReFoc: A Closed-Loop Sensorbased Adaptive Optics and Remote Focusing Control Software. Journal of Open Source Software, 2022, 7, 4075.	2.0	O
10	Single-mode sapphire fiber Bragg grating. Optics Express, 2022, 30, 15482.	1.7	15
11	Vectorial adaptive optics: correcting both polarization and phase. , 2022, , .		O
12	Compressed imaging with focused light. Journal of Optics (United Kingdom), 2022, 24, 065301.	1.0	1
13	Dynamic phase measurement of fast liquid crystal phase modulators. Optics Express, 2022, 30, 24788.	1.7	1
14	On-chip beam rotators, adiabatic mode converters, and waveplates through low-loss waveguides with variable cross-sections. Light: Science and Applications, 2022, 11 , .	7.7	21
15	Implementation of a 4Pi-SMS super-resolution microscope. Nature Protocols, 2021, 16, 677-727.	5.5	29
16	Antimony thin films demonstrate programmable optical nonlinearity. Science Advances, 2021, 7, .	4.7	42
17	Democratising "Microscopi†a 3D printed automated XYZT fluorescence imaging system for teaching, outreach and fieldwork. Wellcome Open Research, 2021, 6, 63.	0.9	10
18	3D super-resolution deep-tissue imaging in living mice. Optica, 2021, 8, 442.	4.8	39

#	Article	IF	Citations
19	Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nature Methods, 2021, 18, 688-693.	9.0	39
20	Arbitrary complex retarders using a sequence of spatial light modulators as the basis for adaptive polarisation compensation. Journal of Optics (United Kingdom), 2021, 23, 065602.	1.0	14
21	Python-Microscope – a new open-source Python library for the control of microscopes. Journal of Cell Science, 2021, 134, .	1.2	7
22	Polarisation optics for biomedical and clinical applications: a review. Light: Science and Applications, 2021, 10, 194.	7.7	222
23	Tomographic refractive index profiling of direct laser written waveguides. Optics Express, 2021, 29, 35414.	1.7	3
24	Adaptive optics for high-resolution imaging. Nature Reviews Methods Primers, 2021, 1, .	11.8	90
25	Extended range and aberration-free autofocusing via remote focusing and sequence-dependent learning. Optics Express, 2021, 29, 36660.	1.7	4
26	Laser induced forward transfer isolating complex-shaped cell by beam shaping. Biomedical Optics Express, 2021, 12, 7024.	1.5	5
27	Shrinking multiplexed orbital angular momentum to the nanoscale. Light: Science and Applications, 2021, 10, 220.	7.7	1
28	Remote-Focussing for Volumetric Imaging in a Contactless and Label-Free Neurosurgical Microscope. , 2021, , .		1
29	Microscopic processes during ultrafast laser generation of Frenkel defects in diamond. Physical Review B, 2021, 104, .	1.1	9
30	Sensorless shift-compensation for microscopy through a multimode optical fibre. , 2021, , .		0
31	Sensorless adaptive optics for multimode optical fibre endo-microscopy., 2021,,.		0
32	Arbitrary vectorial state conversion using liquid crystal spatial light modulators. Optics Communications, 2020, 459, 125028.	1.0	18
33	A universal framework for microscope sensorless adaptive optics: Generalized aberration representations. APL Photonics, 2020, 5, .	3.0	17
34	A Compact Full 2Ï€ Flexoelectroâ€Optic Liquid Crystal Phase Modulator. Advanced Materials Technologies, 2020, 5, 2000589.	3.0	9
35	Millisecond Optical Phase Modulation Using Multipass Configurations with Liquid-Crystal Devices. Physical Review Applied, 2020, 14, .	1.5	7
36	CryoSIM: super-resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultrastructural imaging. Optica, 2020, 7, 802.	4.8	57

#	Article	IF	CITATIONS
37	Photonic Topological Mode Bound to a Vortex. Physical Review Letters, 2020, 125, 117401.	2.9	27
38	Transmissive flexoelectro-optic liquid crystal optical phase modulator with 2Ï€ modulation. AIP Advances, 2020, 10, 055011.	0.6	2
39	Electrically-tunable positioning of topological defects in liquid crystals. Nature Communications, 2020, 11, 2203.	5.8	34
40	Background Reduction in STED-FCS Using a Bivortex Phase Mask. ACS Photonics, 2020, 7, 1742-1753.	3.2	10
41	z-STED Imaging and Spectroscopy to Investigate Nanoscale Membrane Structure and Dynamics. Biophysical Journal, 2020, 118, 2448-2457.	0.2	22
42	Vectorial adaptive optics: correction of polarization and phase., 2020,,.		5
43	Compact and contactless reflectance confocal microscope for neurosurgery. Biomedical Optics Express, 2020, 11, 4772.	1.5	7
44	Deconvolution for multimode fiber imaging: modeling of spatially variant PSF. Biomedical Optics Express, 2020, 11, 4759.	1.5	18
45	Anisoplanatic adaptive optics in parallelized laser scanning microscopy. Optics Express, 2020, 28, 14222.	1.7	10
46	Multi-scale sensorless adaptive optics: application to stimulated emission depletion microscopy. Optics Express, 2020, 28, 16749.	1.7	12
47	Trimming laser-written waveguides through overwriting. Optics Express, 2020, 28, 28006.	1.7	9
48	Microscope-AOtools: a generalised adaptive optics implementation. Optics Express, 2020, 28, 28987.	1.7	11
49	Practical sensorless aberration estimation for 3D microscopy with deep learning. Optics Express, 2020, 28, 29044.	1.7	33
50	Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber. Optics Letters, 2020, 45, 6599.	1.7	15
51	Vectorial adaptive optics - correction of polarization and phase. , 2020, , .		2
52	Extraordinary Beam Modulation with Ordinary GRIN Lenses. Optics and Photonics News, 2020, 31, 47.	0.4	4
53	A Universal Framework for Microscope Adaptive Optics. , 2020, , .		0
54	Sensorless adaptive optics with a laser free spinning disk confocal microscope. , 2020, , .		0

#	Article	IF	CITATIONS
55	Closed-loop multiconjugate adaptive optics for microscopy. , 2020, , .		1
56	Complex vectorial optics through gradient index lens cascades. Nature Communications, 2019, 10, 4264.	5 . 8	79
57	Adaptive optics aberration correction for deep direct laser written waveguides in the heating regime. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	20
58	Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector. Scientific Reports, 2019, 9, 7016.	1.6	8
59	Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica, 2019, 6, 662.	4.8	89
60	Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Letters, 2019, 19, 2377-2383.	4.5	70
61	Robust measurement of flexoelectro-optic switching with different surface alignments. Journal of Applied Physics, 2019, 125, 093104.	1.1	2
62	Adaptive optics in laser processing. Light: Science and Applications, 2019, 8, 110.	7.7	154
63	Adaptive measurement and correction of polarization aberrations. , 2019, , .		6
64	High precision automated alignment procedure for two-mirror telescopes. Applied Optics, 2019, 58, 7388.	0.9	8
65	Quasi-simultaneous multiplane calcium imaging of neuronal circuits. Biomedical Optics Express, 2019, 10, 267.	1.5	10
66	Dynamic response of large tilt-angle flexoelectro-optic liquid crystal modulators. Optics Express, 2019, 27, 15184.	1.7	5
67	Calibration of a phase-only spatial light modulator for both phase and retardance modulation. Optics Express, 2019, 27, 17912.	1.7	23
68	Adaptive optics allows STED-FCS measurements in the cytoplasm of living cells. Optics Express, 2019, 27, 23378.	1.7	26
69	Active compensation of extrinsic polarization errors using adaptive optics. Optics Express, 2019, 27, 35797.	1.7	14
70	Investigation of structural mechanisms of laser-written waveguide formation through third-harmonic microscopy. Optics Letters, 2019, 44, 1039.	1.7	6
71	Focusing light in biological tissue through a multimode optical fiber: refractive index matching. Optics Letters, 2019, 44, 2386.	1.7	12
72	Component-wise testing of laser-written integrated coupled-mode beam splitters. Optics Letters, 2019, 44, 3174.	1.7	4

#	Article	IF	Citations
73	IsoSense: frequency enhanced sensorless adaptive optics through structured illumination. Optica, 2019, 6, 370.	4.8	54
74	Dynamic optical laser fabrication for engineering of quantum photonic devices., 2019,,.		0
75	A novel deployable telescope to facilitate a low-cost < 1m GSD video rapid-revisit small satellite constellation. , $2019, \ldots$		2
76	Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light: Science and Applications, 2018, 7, 110.	7.7	118
77	Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1  kHz switching. Optics Letters, 2018, 43, 4362.	1.7	12
78	Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light: Science and Applications, 2018, 7, 17117-17117.	7.7	94
79	Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices. Optics Express, 2018, 26, 6126.	1.7	7
80	Read on Demand Images in Laserâ€Written Polymerizable Liquid Crystal Devices. Advanced Optical Materials, 2018, 6, 1800515.	3.6	31
81	Microscope calibration using laser written fluorescence. Optics Express, 2018, 26, 21887.	1.7	29
82	Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation. Optics Letters, 2018, 43, 5993.	1.7	18
83	Sensorless adaptive optics for isoSTED nanoscopy. , 2018, , .		2
84	Ultrafast laser writing quill effect in low loss waveguide fabrication regime. Optics Express, 2018, 26, 30716.	1.7	5
85	Generation of 3-dimensional polymer structures in liquid crystalline devices using direct laser writing. RSC Advances, 2017, 7, 507-511.	1.7	31
86	Laser writing of coherent colour centres in diamond. Nature Photonics, 2017, 11, 77-80.	15.6	203
87	High resolution structural characterisation of laser-induced defect clusters inside diamond. Applied Physics Letters, 2017, 111, .	1.5	20
88	Aberrations in stimulated emission depletion (STED) microscopy. Optics Communications, 2017, 404, 203-209.	1.0	26
89	Hybrid laser written waveguides in fused silica for low loss and polarization independence. Optics Express, 2017, 25, 4845.	1.7	20
90	Aberrations in 4Pi Microscopy. Optics Express, 2017, 25, 14049.	1.7	23

#	Article	IF	CITATIONS
91	Rapid adaptive remote focusing microscope for sensing of volumetric neural activity. Biomedical Optics Express, 2017, 8, 4369.	1.5	49
92	Ultra-High Resolution 3D Imaging of Whole Cells. Cell, 2016, 166, 1028-1040.	13.5	247
93	Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching. Journal of Applied Physics, 2016, 119, .	1.1	20
94	Inscription of 3D waveguides in diamond using an ultrafast laser. Applied Physics Letters, 2016, 109, .	1.5	63
95	Roadmap on neurophotonics. Journal of Optics (United Kingdom), 2016, 18, 093007.	1.0	28
96	Coma aberrations in combined two- and three-dimensional STED nanoscopy. Optics Letters, 2016, 41, 3631.	1.7	25
97	Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Optics Express, 2016, 24, 8862.	1.7	82
98	Pulse front adaptive optics in multiphoton microscopy. Proceedings of SPIE, 2016, , .	0.8	0
99	Pulse front control with adaptive optics. , 2016, , .		0
100	Stabilizing the uniform lying helix alignment in chiral nematic liquid crystals using direct laser writing. Ferroelectrics, 2016, 495, 167-173.	0.3	0
101	Deformable mirror based remote focusing for fast three-dimensional microscopy. , 2016, , .		0
102	Is phase-mask alignment aberrating your STED microscope?. Methods and Applications in Fluorescence, 2015, 3, 024002.	1.1	19
103	Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica, 2015, 2, 177.	4.8	97
104	Adaptive optimisation of a generalised phase contrast beam shaping system. Optics Communications, 2015, 342, 109-114.	1.0	6
105	Aberrations and adaptive optics in super-resolution microscopy. Microscopy (Oxford, England), 2015, 64, 251-261.	0.7	124
106	Point-spread function optimization in isoSTED nanoscopy. Optics Letters, 2015, 40, 3627.	1.7	18
107	Pulse front adaptive optics: a new method for control of ultrashort laser pulses. Optics Express, 2015, 23, 19348.	1.7	38
108	Effects of sample dispersion on ultrafast laser focusing. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1272.	0.9	10

#	Article	IF	CITATIONS
109	Waveguide fabrication in KDP crystals with femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2015, 118, 831-836.	1.1	17
110	Adaptive optics for single molecule switching nanoscopy. , 2015, , .		0
111	Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 765.	0.8	33
112	Exploring the depth range for three-dimensional laser machining with aberration correction. Optics Express, 2014, 22, 17644.	1.7	64
113	Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen. Frontiers in Physiology, 2014, 5, 384.	1.3	15
114	Strain-optic active control for quantum integrated photonics. Optics Express, 2014, 22, 21719.	1.7	18
115	Adaptive optics from microscopy to nanoscopy. Proceedings of SPIE, 2014, , .	0.8	3
116	Adaptive Optics for Fluorescence Microscopy. , 2014, , 15-33.		7
117	Adaptive optical microscopy: the ongoing quest for a perfect image. Light: Science and Applications, 2014, 3, e165-e165.	7.7	475
118	Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy. Journal of Optics (United Kingdom), 2013, 15, 094010.	1.0	38
119	Auto-aligning stimulated emission depletion microscope using adaptive optics. Optics Letters, 2013, 38, 1860.	1.7	50
120	Refractive index profiling of direct laser written waveguides: tomographic phase imaging. Optical Materials Express, 2013, 3, 1223.	1.6	27
121	Direct wavefront sensing in adaptive optical microscopy using backscattered light. Applied Optics, 2013, 52, 5523.	0.9	49
122	Analysis of the Three-Dimensional Focal Positioning Capability of Adaptive Optic Elements. International Journal of Optomechatronics, 2013, 7, 1-14.	3.3	23
123	Adaptive optics for high-resolution microscopy. , 2013, , .		2
124	Optimal Sensorless Adaptive Optics Schemes for Super-Resolution Microscopy. , 2013, , .		0
125	Adaptive slit beam shaping for direct laser written waveguides. Optics Letters, 2012, 37, 470.	1.7	74
126	Focussing over the edge: adaptive subsurface laser fabrication up to the sample face. Optics Express, 2012, 20, 19978.	1.7	17

#	Article	IF	Citations
127	Adaptive optics enables 3D STED microscopy in aberrating specimens. Optics Express, 2012, 20, 20998.	1.7	278
128	Dynamic control of directional asymmetry observed in ultrafast laser direct writing. Applied Physics Letters, 2012, 101, .	1.5	34
129	Effects of aberrations and specimen structure in conventional, confocal and twoâ€photon fluorescence microscopy. Journal of Microscopy, 2012, 245, 63-71.	0.8	9
130	Uniform Lying Helix Alignment on Periodic Surface Relief Structure Generated via Laser Scanning Lithography. Molecular Crystals and Liquid Crystals, 2011, 544, 37/[1025]-49/[1037].	0.4	26
131	Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Optics Express, 2011, 19, 24122.	1.7	78
132	Efficient schemes for adaptive optics in high-resolution microscopy. , 2011, , .		0
133	Dual adaptive optics system for laser processing of diamond. , 2011, , .		0
134	Sensorless adaptive optics for microscopy. Proceedings of SPIE, 2011, , .	0.8	8
135	Long-term imaging of mouse embryos using adaptive harmonic generation microscopy. Journal of Biomedical Optics, $2011, 16, 1$.	1.4	20
136	Image-based adaptive optics for high-resolution microscopy. , 2011, , .		0
137	Adaptive multiphoton and harmonic generation microscopy for developmental biology. Proceedings of SPIE, 2010, , .	0.8	0
138	Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy. BMC Cell Biology, 2010, 11, 38.	3.0	55
139	Full spectrum filterless fluorescence microscopy. Journal of Microscopy, 2010, 237, 103-109.	0.8	13
140	The influence of aberrations in third harmonic generation microscopy. Journal of Optics (United) Tj ETQq0 0 0 rgE	BT/Qverlo	ck ₆ 10 Tf 50 2
141	Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Optics Express, 2010, 18, 21090.	1.7	165
142	Adaptive optics for direct laser writing with plasma emission aberration sensing. Optics Express, 2010, 18, 656.	1.7	47
143	Adaptive optics for two-photon and harmonic eneration microscopy., 2010,,.		1
144	Adaptive optics for multiphoton microscopy. Proceedings of SPIE, 2009, , .	0.8	2

#	Article	IF	CITATIONS
145	Optimum deformable mirror modes for sensorless adaptive optics. Optics Communications, 2009, 282, 4467-4474.	1.0	30
146	Image-based adaptive optics for two-photon microscopy. Optics Letters, 2009, 34, 2495.	1.7	348
147	Adaptive harmonic generation microscopy of mammalian embryos. Optics Letters, 2009, 34, 3154.	1.7	60
148	Optimum schemes for wavefront sensorless adaptive optics in microscopy., 2009,,.		1
149	Effects of aberrations and specimen structure in confocal and two-photon microscopy., 2009,,.		0
150	Adaptive optics for biomedical microscopy. , 2009, , .		0
151	Adaptive optics for structured illumination microscopy. Optics Express, 2008, 16, 9290.	1.7	157
152	Image-based adaptive optics for imaging and microscopy. Proceedings of SPIE, 2008, , .	0.8	1
153	Compensation and Improvement of Intensity and Distribution in Reconstructed Image Using Adaptive Optics in Holographic Data Storage. Japanese Journal of Applied Physics, 2008, 47, 5900-5903.	0.8	4
154	WAVE FRONT SENSOR-LESS ADAPTIVE OPTICS FOR IMAGING AND MICROSCOPY – Invited Paper. , 2008, , .		0
155	A model-based approach to wave front sensorless adaptive optics. , 2007, , .		1
156	Effects of specimen morphology on adaptive confocal and multiphoton microscopy., 2007,,.		0
157	Wavefront sensorless adaptive optics for large aberrations. Optics Letters, 2007, 32, 5.	1.7	169
158	Image based adaptive optics through optimisation of low spatial frequencies. Optics Express, 2007, 15, 8176.	1.7	165
159	Image-based wavefront sensorless adaptive optics. , 2007, , .		10
160	Adaptive optics in microscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2829-2843.	1.6	380
161	Specimen-induced distortions in light microscopy. Journal of Microscopy, 2007, 228, 97-102.	0.8	24
162	Wave front sensor-less adaptive optics: a model-based approach using sphere packings. Optics Express, 2006, 14, 1339.	1.7	158

#	Article	IF	Citations
163	A model-based approach to wave front sensorless adaptive optics. , 2006, 6306, 189.		О
164	Adaptive optics for microscopy, optical data storage, and micromachining. , 2006, , .		3
165	Predictive aberration correction for multilayer optical data storage. Applied Physics Letters, 2006, 88, 031109.	1.5	33
166	Specimen-induced aberrations and adaptive optics for microscopy. , 2005, , .		3
167	Simple optimization procedure for objective lens correction collar setting. Journal of Microscopy, 2005, 217, 184-187.	0.8	24
168	Methods for the characterization of deformable membrane mirrors. Applied Optics, 2005, 44, 5131.	2.1	48
169	Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry. Journal of Microscopy, 2004, 213, 11-19.	0.8	77
170	Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. Journal of Microscopy, 2004, 214, 36-42.	0.8	74
171	Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry. Journal of Microscopy, 2004, 215, 271-280.	0.8	15
172	Wavefront sensorless adaptive optics, modal wavefront sensing, and sphere packings. , 2004, , .		2
173	Aberrations and adaptive optics in confocal and multiphoton microscopy. , 2004, , .		0
174	Dynamic axial-position control of a laser-trapped particle by wave-front modification. Optics Letters, 2003, 28, 465.	1.7	30
175	Enhancement of Laser Trapping Force by Spherical Aberration Correction Using a Deformable Mirror. Japanese Journal of Applied Physics, 2003, 42, L701-L703.	0.8	26
176	New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 2112.	0.8	45
177	Active aberration correction for the writing of three-dimensional optical memory devices. Applied Optics, 2002, 41, 1374.	2.1	30
178	Adaptive aberration correction in a confocal microscope. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5788-5792.	3.3	420
179	Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction. Journal of Biomedical Optics, 2001, 6, 266.	1.4	85
180	Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin. Journal of Microscopy, 2000, 200, 68-74.	0.8	46

#	Article	IF	CITATIONS
181	Adaptive aberration correction in a two-photon microscope. Journal of Microscopy, 2000, 200, 105-108.	0.8	152
182	New modal wave-front sensor: a theoretical analysis. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 1098.	0.8	162
183	Closed-loop aberration correction by use of a modal Zernike wave-front sensor. Optics Letters, 2000, 25, 1083.	1.7	101
184	Dynamic wave-front generation for the characterization and testing of optical systems. Optics Letters, 1998, 23, 1849.	1.7	102
185	Spectral confocal reflection microscopy using a white light source. Journal of the European Optical Society-Rapid Publications, 0, 3, .	0.9	14
186	Self calibration of sensorless adaptive optical microscopes. Journal of the European Optical Society-Rapid Publications, 0, 6, .	0.9	22
187	Microscope-Cockpit: Python-based bespoke microscopy for bio-medical science. Wellcome Open Research, 0, 6, 76.	0.9	4
188	Microscope-Cockpit: Python-based bespoke microscopy for bio-medical science. Wellcome Open Research, 0, 6, 76.	0.9	2
189	Democratising "Microscopi― a 3D printed automated XYZT fluorescence imaging system for teaching, outreach and fieldwork. Wellcome Open Research, 0, 6, 63.	0.9	5