
Xiaohua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6953144/publications.pdf Version: 2024-02-01

Χιλομιίλ Chen

#	Article	IF	CITATIONS
1	A Simple Approach towards Highly Dense Graphene Films for High Volumetric Performance Supercapacitors. ChemElectroChem, 2022, 9, .	3.4	5
2	Selfâ€Healing SeO ₂ Additives Enable Zinc Metal Reversibility in Aqueous ZnSO ₄ Electrolytes. Advanced Functional Materials, 2022, 32, .	14.9	71
3	Highly reversible zinc metal anodes enabled by protonated melamine. Journal of Materials Chemistry A, 2022, 10, 6636-6640.	10.3	21
4	3D modified graphene-carbon fiber hybridized skeleton/PDMS composites with high thermal conductivity. Composites Science and Technology, 2022, 225, 109499.	7.8	19
5	Customizing oxygen–containing functional groups for reduced graphene oxide film supercapacitor with high volumetric performance. Journal of Energy Storage, 2022, 52, 104642.	8.1	6
6	An ultrasonication-aided self-assembly strategy toward a PTCDA/RGO film cathode for organic K-ion full batteries. Chemical Communications, 2022, 58, 8348-8351.	4.1	9
7	Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium-sulfur batteries. Nano Energy, 2021, 79, 105393.	16.0	37
8	Redox-active engineered holey reduced graphene oxide films for K+ storage. Carbon, 2021, 174, 173-179.	10.3	12
9	Confining Sb nanoparticles in bamboo-like hierarchical porous aligned carbon nanotubes for use as an anode for sodium ion batteries with ultralong cycling performance. Journal of Materials Chemistry A, 2021, 9, 2152-2160.	10.3	28
10	Enhanced Potassium-Ion Storage of the 3D Carbon Superstructure by Manipulating the Nitrogen-Doped Species and Morphology. Nano-Micro Letters, 2021, 13, 1.	27.0	570
11	Olivine LiMn _x Fe _{1â^'x} PO ₄ cathode materials for lithium ion batteries: restricted factors of rate performances. Journal of Materials Chemistry A, 2021, 9, 14214-14232.	10.3	60
12	Fe/Fe ₃ C Embedded in N-Doped Worm-like Porous Carbon for High-Rate Catalysis in Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24710-24722.	8.0	19
13	Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions. Advanced Materials, 2021, 33, e2100445.	21.0	351
14	Oxygen-Containing Functional Groups Regulating the Carbon/Electrolyte Interfacial Properties Toward Enhanced K+ Storage. Nano-Micro Letters, 2021, 13, 192.	27.0	60
15	N-rich reduced graphene oxide film with cross-coupled porous networks as free-standing electrode for high performance supercapacitors. Applied Surface Science, 2021, 563, 150303.	6.1	9
16	Element substitution of a spinel LiMn ₂ O ₄ cathode. Journal of Materials Chemistry A, 2021, 9, 21532-21550.	10.3	51
17	Water intercalation strategy to fabricate low-potential and dense grapheme film anode for high energy density K-ion batteries. Electrochimica Acta, 2021, 403, 139626.	5.2	0
18	Optimized Kinetics Match and Charge Balance Toward Potassium Ion Hybrid Capacitors with Ultrahigh Energy and Power Densities. Small, 2020, 16, e2003724.	10.0	62

XIAOHUA CHEN

#	Article	IF	CITATIONS
19	Sewable and Cuttable Flexible Zinc-Ion Hybrid Supercapacitor Using a Polydopamine/Carbon Cloth-Based Cathode. ACS Sustainable Chemistry and Engineering, 2020, 8, 16028-16036.	6.7	43
20	A Bottomâ€up Inâ€situ Preparation of Grapheneâ€like Porous Carbon for Ultrahigh Surface Area Specific Capacitance Supercapacitors. ChemNanoMat, 2020, 6, 1789-1796.	2.8	2
21	Enhanced performance of lithium–sulfur batteries based on single-sided chemical tailoring, and organosiloxane grafted PP separator. RSC Advances, 2020, 10, 18115-18123.	3.6	6
22	The Role of Cation Vacancies in Electrode Materials for Enhanced Electrochemical Energy Storage: Synthesis, Advanced Characterization, and Fundamentals. Advanced Energy Materials, 2020, 10, 1903780.	19.5	138
23	Ultrafast Activating Strategy to Significantly Enhance the Electrocatalysis of Commercial Carbon Cloth for Oxygen Evolution Reaction and Overall Water Splitting. ChemNanoMat, 2020, 6, 542-549.	2.8	7
24	Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Throughâ€Plane Conductivity of 3D Hybridized Structure. Small, 2020, 16, e1903315.	10.0	40
25	High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, and sulfur Co-doped carbon. Carbon, 2020, 164, 1-11.	10.3	71
26	Achieving ultrahigh volumetric performance of graphene composite films by an outer–inner dual space utilizing strategy. Journal of Materials Chemistry A, 2020, 8, 9661-9669.	10.3	24
27	Room temperature ultrafast synthesis of N- and O-rich graphene films with an expanded interlayer distance for high volumetric capacitance supercapacitors. Nanoscale, 2019, 11, 16515-16522.	5.6	19
28	Staging: Unraveling the Potassium Storage Mechanism in Graphite Foam (Adv. Energy Mater. 22/2019). Advanced Energy Materials, 2019, 9, 1970081.	19.5	5
29	Improving Polysulfides Adsorption and Redox Kinetics by the Co ₄ N Nanoparticle/Nâ€Đoped Carbon Composites for Lithium ulfur Batteries. Small, 2019, 15, e1901454.	10.0	130
30	Unraveling the Potassium Storage Mechanism in Graphite Foam. Advanced Energy Materials, 2019, 9, 1900579.	19.5	133
31	Preparation of graphene/copper composites using solution-combusted porous sheet-like cuprous oxide. Journal of Materials Science, 2019, 54, 396-403.	3.7	8
32	Hierarchical microstructure of CNTs interwoven ultrathin Co3S4 nanosheets as a high performance anode for sodium-ion battery. Ceramics International, 2019, 45, 3591-3599.	4.8	30
33	In-situ construction of interconnected N-doped porous carbon-carbon nanotubes networks derived from melamine anchored with MoS2 for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 744, 75-81.	5.5	21
34	Compact-Nanobox Engineering of Transition Metal Oxides with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2018, 10, 8955-8964.	8.0	38
35	Facile synthesis of single-crystalline Co3O4 cubes as high-performance anode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 2321-2328.	2.5	8
36	Saqima-like Co3O4/CNTs secondary microstructures with ultrahigh initial Coulombic efficiency as an an anode for lithium ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 417-427.	2.5	11

XIAOHUA CHEN

#	Article	IF	CITATIONS
37	Free-standing MnO2/nitrogen-doped graphene paper hybrids as binder-free electrode for supercapacitor applications. Materials Letters, 2018, 231, 114-118.	2.6	16
38	Graphitic carbon-wrapped NiO embedded three dimensional nitrogen doped aligned carbon nanotube arrays with long cycle life for lithium ion batteries. RSC Advances, 2018, 8, 28440-28446.	3.6	8
39	Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors. Carbon, 2017, 117, 163-173.	10.3	105
40	Self-assembled synthesis of diamond-like MnCo2O4 as anode active material for lithium-ion batteries with high cycling stability. Journal of Alloys and Compounds, 2017, 722, 387-393.	5.5	23
41	Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors. Journal of Power Sources, 2017, 361, 70-79.	7.8	48
42	Effects of anhydrites before and after modification as well as their contents on the thermal and mechanical properties of polyamide 6/anhydrite composites. Polymer Composites, 2016, 37, 2360-2368.	4.6	3
43	Capacity-increasing robust porous SiO ₂ /Si/graphene/C microspheres as an anode for Li-ion batteries. RSC Advances, 2016, 6, 45077-45084.	3.6	18
44	Dualâ€Confined Sulfur Nanoparticles Encapsulated in Hollow TiO ₂ Spheres Wrapped with Graphene for Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 2911-2917.	3.3	27
45	Molybdenum disulfide nanosheet embedded three-dimensional vertically aligned carbon nanotube arrays for extremely-excellent cycling stability lithium-ion anodes. RSC Advances, 2016, 6, 80320-80327.	3.6	13
46	Facile synthesis of 3D plum candy-like ZnCo ₂ O ₄ microspheres as a high-performance anode for lithium ion batteries. RSC Advances, 2016, 6, 79971-79977.	3.6	32
47	Hierarchical Porous ZnMn 2 O 4 Microspheres as a High-Performance Anode for Lithium-Ion Batteries. Electrochimica Acta, 2016, 213, 37-45.	5.2	50
48	Grass-like CuCo ₂ O ₄ nanowire arrays supported on nickel foam with high capacitances and desirable cycling performance. RSC Advances, 2015, 5, 70494-70497.	3.6	36
49	Nitrogen-doped carbon coated LiFePO ₄ /carbon nanotube interconnected nanocomposites for high performance lithium ion batteries. New Journal of Chemistry, 2015, 39, 9782-9788.	2.8	13
50	Controllable graphene coated mesoporous carbon/sulfur composite for lithium–sulfur batteries. RSC Advances, 2015, 5, 74138-74143.	3.6	10
51	Alignment and structural control of nitrogen-doped carbon nanotubes by utilizing precursor concentration effect. Nanotechnology, 2014, 25, 475601.	2.6	8
52	Sulfurâ€Impregnated, Sandwichâ€Type, Hybrid Carbon Nanosheets with Hierarchical Porous Structure for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1301988.	19.5	130
53	One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH) 2 composites for high performance electrochemical supercapacitor. Journal of Power Sources, 2013, 243, 555-561.	7.8	204
54	ARCHITECTURE OF FLOWER-LIKE rGO/CNTs-LOADED Cu _x O NANOPARTICLES AND ITS PHOTOCATALYTIC PROPERTIES. Nano, 2013, 08, 1350052.	1.0	7

XIAOHUA CHEN

#	Article	IF	CITATIONS
55	Gelatin-based activated carbon with carbon nanotubes as framework for electric double-layer capacitors. Journal of Porous Materials, 2012, 19, 37-44.	2.6	7
56	SYNTHESIZING A WELL-ALIGNED CARBON NANOTUBE FOREST WITH HIGH QUALITY VIA THE NEBULIZED SPRAY PYROLYSIS METHOD BY OPTIMIZING ULTRASONIC FREQUENCY. Nano, 2011, 06, 343-348.	1.0	5
57	INVESTIGATION OF HOMOLOGOUS SERIES AS PRECURSORY HYDROCARBONS FOR ALIGNED CARBON NANOTUBE FORMATION BY THE SPRAY PYROLYSIS METHOD. Nano, 2011, 06, 205-213.	1.0	226
58	Functionalized Multi-Walled Carbon Nanotubes Prepared by In Situ Polycondensation of Polyurethane. Macromolecular Chemistry and Physics, 2007, 208, 964-972.	2.2	45
59	Facile approach to obtain individual-nanotube dispersion at high loading in carbon nanotubes/polyimide composites. Polymers for Advanced Technologies, 2007, 18, 458-462.	3.2	20
60	Noncovalent-wrapped sidewall functionalization of multiwalled carbon nanotubes with polyimide. Polymer Composites, 2007, 28, 36-41.	4.6	40