Mats-Olof Mattsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6953100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	5G New Radio Requires the Best Possible Risk Assessment Studies: Perspective and Recommended Guidelines. Frontiers in Communications and Networks, 2021, 2, .	3.0	8
2	5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. International Journal of Environmental Research and Public Health, 2019, 16, 3406.	2.6	131
3	Activation of the intracellular temperature and ROS sensor membrane protein STIM1 as a mechanism underpinning biological effects of low-level low frequency magnetic fields. Medical Hypotheses, 2019, 122, 68-72.	1.5	7
4	Is there a Biological Basis for Therapeutic Applications of Millimetre Waves and THz Waves?. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 863-878.	2.2	24
5	Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity. Frontiers in Public Health, 2018, 6, 85.	2.7	33
6	The changing face of nanomaterials: Risk assessment challenges along the value chain. Regulatory Toxicology and Pharmacology, 2017, 84, 105-115.	2.7	25
7	Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins?. Frontiers in Public Health, 2017, 5, 280.	2.7	17
8	Pooling and Analysis of Published in Vitro Data: A Proof of Concept Study for the Grouping of Nanoparticles. International Journal of Molecular Sciences, 2015, 16, 26211-26236.	4.1	9
9	Grouping of Experimental Conditions as an Approach to Evaluate Effects of Extremely Low-Frequency Magnetic Fields on Oxidative Response in in vitro Studies. Frontiers in Public Health, 2014, 2, 132.	2.7	55
10	EMF Monitoring—Concepts, Activities, Gaps and Options. International Journal of Environmental Research and Public Health, 2014, 11, 9460-9479.	2.6	41
11	Interactions Between Nanosized Materials and the Brain. Current Medicinal Chemistry, 2014, 21, 4200-4214.	2.4	46
12	Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology, 2012, 301, 1-12.	4.2	56
13	Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiation and Environmental Biophysics, 2010, 49, 731-741.	1.4	63
14	Risks from accidental exposures to engineered nanoparticles and neurological health effects: A critical review. Particle and Fibre Toxicology, 2010, 7, 42.	6.2	148
15	Exposure to ELF magnetic fields modulate redox related protein expression in mouse macrophages. Toxicology Letters, 2010, 192, 330-336.	0.8	50
16	Background ELF magnetic fields in incubators: A factor of importance in cell culture work. Cell Biology International, 2009, 33, 755-757.	3.0	18
17	Possible effects of Electromagnetic Fields (EMF) on Human Health - Opinion of the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Toxicology, 2008, 246, 248-250.	4.2	149
18	Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: Possible immune cell activation. Journal of Cellular Biochemistry, 2004, 93, 83-92.	2.6	187

MATS-OLOF MATTSSON

#	Article	IF	CITATIONS
19	Mobile telephones and cancer: is there really no evidence of an association? (review). International Journal of Molecular Medicine, 2003, 12, 67-72.	4.0	33
20	INABILITY OF 50HZ MAGNETIC FIELDS TO REGULATE PKC- AND CA2+-DEPENDENT GENE EXPRESSION IN JURKAT CELLS. Cell Biology International, 2002, 26, 203-209.	3.0	5
21	[Ca2+]iRISE IN JURKAT E6-1 CELL LINES FROM DIFFERENT SOURCES AS A RESPONSE TO 50Hz MAGNETIC FIELD EXPOSURE IS A REPRODUCIBLE EFFECT AND INDEPENDENT OF POLY- ? -LYSINE TREATMENT. Cell Biology International, 2001, 25, 901-907.	3.0	17
22	Expression pattern of glutamate decarboxylase (GAD) in the developing cortex of the embryonic chick brain. International Journal of Developmental Neuroscience, 1997, 15, 127-137.	1.6	7
23	Ornithine decarboxylase activity and polyamine levels are different in Jurkat and CEM-CM3 cells after exposure to a 50 Hz magnetic field. Bioelectrochemistry, 1997, 43, 169-172.	1.0	15
24	Differences in the release ofl-glutamate andd-aspartate from primary neuronal chick cultures. Neurochemical Research, 1996, 21, 79-85.	3.3	0
25	Two Glutamate Decarboxylase Forms Corresponding to the Mammalian GAD65and GAD67are Expressed During Development of the Chick Telencephalon. European Journal of Neuroscience, 1996, 8, 2111-2117.	2.6	20
26	Morphological and GABA-immunoreactive development of the embryonic chick telencephalon. International Journal of Developmental Neuroscience, 1995, 13, 463-472.	1.6	12
27	On the activity of ?-aminobutyric acid and glutamate transporters in chick embryonic neurons and rat synaptosomes. Neurochemical Research, 1992, 17, 333-337.	3.3	9
28	Inhibition of transporter mediated ?-aminobutyric acid (GABA) release by SKF 89976-A, a GABA uptake inhibitor, studied in a primary neuronal culture from chicken. Neurochemical Research, 1992, 17, 577-584.	3.3	10
29	Factors involved in the formation and stabilization of cell aggregates obtained from amphibian embryonic explants. Cell Differentiation, 1988, 23, 69-76.	0.4	2
30	Autoneuralization in the Amphibian Ectoderm -A Species-Specific and Stage-Specific Phenomenon. Pathobiology, 1987, 55, 145-151.	3.8	0
31	Cyclic AMP and Cell Differentiation in Amphibian Embryonic Explants. Pathobiology, 1986, 54, 106-111.	3.8	0