List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6952288/publications.pdf Version: 2024-02-01

XIN FENC

#	Article	IF	CITATIONS
1	Effect of different dehydration methods on the properties of gelatin films. Food Chemistry, 2022, 374, 131814.	4.2	15
2	In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility. Journal of Materials Science and Technology, 2022, 112, 202-211.	5.6	16
3	Regulation mechanism of myofibrillar protein emulsification mode by adding psyllium (Plantago) Tj ETQq1 1 0.7	84314 rgB ⁻ 4.2	Г /Qverlock
4	Highly thermally conductive Ti3C2Tx/h-BN hybrid films via coulombic assembly for electromagnetic interference shielding. Journal of Colloid and Interface Science, 2022, 613, 488-498.	5.0	31
5	Dominating roles of protein conformation and water migration in fish muscle quality: The effect of freshness and heating process. Food Chemistry, 2022, 388, 132881.	4.2	17
6	TEMPOâ€oxidized nanofibrillated cellulose assisted exfoliation of MoS2/graphene composites for flexible paperâ€anodes. Chemistry - an Asian Journal, 2022, , .	1.7	0
7	C60 intercalating Ti3C2T MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. Journal of Materials Science and Technology, 2022, 127, 71-77.	5.6	26
8	Dual-functional CDs@ZIF-8/chitosan luminescent film sensors for simultaneous detection and adsorption of tetracycline. Carbohydrate Polymers, 2022, 291, 119587.	5.1	25
9	In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Research, 2022, 15, 8536-8545.	5.8	52
10	Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydrate Polymers, 2021, 254, 117325.	5.1	67
11	Improved solubility and interface properties of pigskin gelatin by microwave irradiation. International Journal of Biological Macromolecules, 2021, 171, 1-9.	3.6	16
12	Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106229.	3.8	54
13	Vulcanization of Ti3C2T MXene/natural rubber composite films for enhanced electromagnetic interference shielding. Applied Surface Science, 2021, 546, 149143.	3.1	26
14	Effect of drying methods on the solubility and amphiphilicity of room temperature soluble gelatin extracted by microwave-rapid freezing-thawing coupling. Food Chemistry, 2021, 351, 129226.	4.2	19
15	Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery. ACS Nano, 2021, 15, 14570-14579.	7.3	39
16	Flexible multilayered aramid nanofiber/silver nanowire films with outstanding thermal durability for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106643.	3.8	54
17	Lignocellulose nanocrystals from pineapple peel: Preparation, characterization and application as efficient Pickering emulsion stabilizers. Food Research International, 2021, 150, 110738.	2.9	26
18	Enhanced Interface Properties and Stability of Lignocellulose Nanocrystals Stabilized Pickering Emulsions: The Leading Role of Tannic Acid. Journal of Agricultural and Food Chemistry, 2021, 69, 14650-14661.	2.4	22

#	Article	IF	CITATIONS
19	Degradation of structural proteins and their relationship with the quality of Mandarin fish (<i>Siniperca chuatsi</i>) during postâ€mortem storage and cooking. International Journal of Food Science and Technology, 2020, 55, 1617-1628.	1.3	9
20	Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chemical Engineering Journal, 2020, 383, 123096.	6.6	173
21	Well-aligned Cu@C nanocubes for highly efficient nonenzymatic glucose detection in human serum. Sensors and Actuators B: Chemical, 2020, 305, 127473.	4.0	42
22	Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: influence of the nanoparticles concentration. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111294.	2.5	83
23	Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydrate Polymers, 2020, 250, 116915.	5.1	50
24	Silver nanowires intercalating Ti ₃ C ₂ T _x MXene composite films with excellent flexibility for electromagnetic interference shielding. Journal of Materials Chemistry C, 2020, 8, 3120-3126.	2.7	71
25	UV-light modulated Ti3C2Tx MXene/g-C3N4 heterojunction film for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105899.	3.8	36
26	Food-Grade Gelatin Nanoparticles: Preparation, Characterization, and Preliminary Application for Stabilizing Pickering Emulsions. Foods, 2019, 8, 479.	1.9	42
27	Structure of Hyla rabbit skin gelatin as affected by microwave-assisted extraction. International Journal of Food Properties, 2019, 22, 1594-1607.	1.3	25
28	Assembling polymeric silver nanowires for transparent conductive cellulose nanopaper. Journal of Materials Chemistry C, 2019, 7, 14123-14129.	2.7	18
29	Solution-processed flexible paper-electrode for lithium-ion batteries based on MoS2 nanosheets exfoliated with cellulose nanofibrils. Electrochimica Acta, 2019, 298, 22-30.	2.6	29
30	Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors. Journal of Materials Science and Technology, 2018, 34, 2189-2196.	5.6	71
31	Use of chitosan to reinforce transparent conductive cellulose nanopaper. Journal of Materials Chemistry C, 2018, 6, 242-248.	2.7	20
32	Transparent luminescent nanopaper based on g-C ₃ N ₄ nanosheet grafted oxidized cellulose nanofibrils with excellent thermal and mechanical properties. Journal of Materials Chemistry C, 2018, 6, 12660-12667.	2.7	17
33	Ultrathin Biomimetic Polymeric Ti ₃ C ₂ T _{<i>x</i>} MXene Composite Films for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 44787-44795.	4.0	298
34	Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydrate Polymers, 2017, 161, 253-260.	5.1	84
35	Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. Journal of Materials Chemistry C, 2017, 5, 573-581.	2.7	51
36	Pt–Ni nanoframes functionalized with carbon dots: an emerging class of bio-nanoplatforms. Journal of Materials Chemistry B, 2017, 5, 6233-6236.	2.9	3

#	Article	IF	CITATIONS
37	Dual-Mode Luminescent Nanopaper Based on Ultrathin g–C ₃ N ₄ Nanosheets Grafted with Rare-Earth Upconversion Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 21555-21562.	4.0	49
38	In Situ Carbonized Cellulose-Based Hybrid Film as Flexible Paper Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 1073-1079.	4.0	61
39	TEMPO-mediated oxidized nanocellulose incorporating with its derivatives of carbon dots for luminescent hybrid films. RSC Advances, 2016, 6, 6504-6510.	1.7	30
40	Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth. Carbohydrate Polymers, 2015, 131, 152-158.	5.1	45
41	Fast fabrication of transparent and multi-luminescent TEMPO-oxidized nanofibrillated cellulose nanopaper functionalized with lanthanide complexes. Journal of Materials Chemistry C, 2015, 3, 2511-2517.	2.7	56
42	Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. Nanoscale, 2015, 7, 13694-13701.	2.8	56
43	Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking. Journal of Materials Chemistry C, 2015, 3, 6717-6724.	2.7	85
44	Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose, 2015, 22, 1763-1772.	2.4	64
45	Integrated Fast Assembly of Free-Standing Lithium Titanate/Carbon Nanotube/Cellulose Nanofiber Hybrid Network Film as Flexible Paper-Electrode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 10695-10701.	4.0	87
46	Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging. RSC Advances, 2015, 5, 31250-31254.	1.7	67
47	Bio-nanoplatforms based on carbon dots conjugating with F-substituted nano-hydroxyapatite for cellular imaging. Nanoscale, 2015, 7, 20033-20041.	2.8	56
48	TEMPO-mediated oxidized winter melon-based carbonaceous aerogel as an ultralight 3D support for enhanced photodegradation of organic pollutants. Physical Chemistry Chemical Physics, 2015, 17, 24901-24907.	1.3	7
49	Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technology, 2015, 271, 1-6.	2.1	51
50	Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis. Particuology, 2015, 19, 53-59.	2.0	48
51	Luminescent and Transparent Nanopaper Based on Rare-Earth Up-Converting Nanoparticle Grafted Nanofibrillated Cellulose Derived from Garlic Skin. ACS Applied Materials & Interfaces, 2014, 6, 14945-14951.	4.0	52
52	Novel mixed–solvothermal synthesis of MoS ₂ nanosheets with controllable morphologies. Crystal Research and Technology, 2013, 48, 363-368.	0.6	76
53	Palygorskite-cerium oxide filled rubber nanocomposites. Applied Clay Science, 2012, 67-68, 44-49.	2.6	12
54	Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Materials & Design, 2012, 35, 847-853.	5.1	21

#	Article	IF	CITATIONS
55	ZnCl2 salt as both molten medium and mineralizer in ambient pressure synthesis of metastable corundum-type In2O3 nanocrystals. Powder Technology, 2012, 221, 164-167.	2.1	1
56	Preparation and properties of polytetrafluorethylene filled ethylene–propylene–diene monomer composites. Journal of Applied Polymer Science, 2012, 123, 3734-3740.	1.3	6
57	A facile method to prepare MoS2 with nanolameller-like morphology. Journal of Alloys and Compounds, 2011, 509, L236-L238.	2.8	6
58	Template, catalyst free growth and photoluminescence property of large scale ZnO nanorods. Materials Technology, 2010, 25, 35-38.	1.5	2
59	Electrostatic and electrosteric stabilization of aqueous suspensions of barite nanoparticles. Powder Technology, 2009, 192, 166-170.	2.1	52
60	Poly(ethylene terephalate) prepolymer graft modification of nano-TiO ₂ and its effect on mechanical property of polycarbonate nanocomposites. Materials Science and Technology, 2009, 25, 1028-1034.	0.8	5
61	Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent. Journal of Shanghai University, 2008, 12, 278-282.	0.1	37
62	Effect of NaNO3–KNO3 eutectic in fabricating ZnO nanocrystals. Solid State Ionics, 2008, 179, 2077-2079.	1.3	8
63	Low pressure pyrolysis of melamine: novel route to preparing titanium carbonitride nanocrystals. Materials Technology, 2008, 23, 158-160.	1.5	1
64	Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation. Materials Letters, 2007, 61, 1549-1551.	1.3	21
65	Electrokinetic properties of barite nanoparticles suspensions in different electrolyte media. Journal of Materials Science, 2007, 42, 9611-9616.	1.7	23
66	Facile Synthesis of Nanocrystalline Titanium Carbonitride via a Chemical Metathesis Route. Chemistry Letters, 2005, 34, 1002-1003.	0.7	6
67	Novel chemical metathesis route to prepare TiCN nanocrystallites at low temperature. Materials Chemistry and Physics, 2005, 94, 58-61.	2.0	13
68	Low temperature synthesis of boron phosphide nanocrystals. Materials Letters, 2005, 59, 865-867.	1.3	18
69	A novel reduction–oxidation synthetic route to cubic zirconia nanocrystallite. Journal of Crystal Growth, 2004, 262, 420-423.	0.7	16
70	Low Temperature Induced Synthesis of TiN Nanocrystals ChemInform, 2004, 35, no.	0.1	1
71	Solvo-thermal synthesis of crystalline dinickel phosphide. Journal of Crystal Growth, 2004, 260, 115-117.	0.7	8
72	Easy synthesis of TiC nanocrystallite. Journal of Crystal Growth, 2004, 264, 316-319.	0.7	26

#	Article	IF	CITATIONS
73	Synthesis of nanocrystalline Ni2B via a solvo-thermal route. Inorganic Chemistry Communication, 2004, 7, 189-191.	1.8	16
74	Novel synthesis of nanocrystalline TiC hollow polyhedrons. Chemical Physics Letters, 2004, 388, 58-61.	1.2	16
75	Low Temperature Induced Synthesis of TiN Nanocrystals. Inorganic Chemistry, 2004, 43, 3558-3560.	1.9	21
76	Preparation of InN nanocrystals by solvo-thermal method. Journal of Crystal Growth, 2002, 241, 189-192.	0.7	49