
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6952254/publications.pdf Version: 2024-02-01

RONAN LERUILENCER

#	Article	lF	CITATIONS
1	Specific trends in phosphate glass crystallization. Journal of Non-Crystalline Solids, 2021, 551, 120431.	1.5	4
2	Investigation on Chalcogenide Glass Additive Manufacturing for Shaping Mid-infrared Optical Components and Microstructured Optical Fibers. Crystals, 2021, 11, 228.	1.0	12
3	Simulation and optimization of the removal of toluene in air by ozonation with a catalytic open-cell foam. Chemical Engineering Research and Design, 2021, 168, 453-464.	2.7	3
4	Effect of the process atmosphere on glass foam synthesis: A high-temperature environmental scanning electron microscopy (HT-ESEM) study. Ceramics International, 2021, 47, 26042-26049.	2.3	3
5	Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform. Optical Materials Express, 2021, 11, 198.	1.6	37
6	The Challenge of 3D Bioprinting of Composite Natural Polymers PLA/Bioglass: Trends and Benefits in Cleft Palate Surgery. Biomedicines, 2021, 9, 1553.	1.4	16
7	Development of a Sustainable Heterogeneous Catalyst Based on an Open-Cell Glass Foam Support: Application in Gas-Phase Ozone Decomposition. ACS Sustainable Chemistry and Engineering, 2020, 8, 2854-2864.	3.2	7
8	Novel and Sustainable Catalytic Ruthenium-Doped Glass Foam for Thermocatalytic Oxidation of Volatile Organic Compounds: An Experimental and Modeling Study. Industrial & Engineering Chemistry Research, 2020, 59, 14758-14766.	1.8	5
9	Glass Recycling. Springer Handbooks, 2019, , 1355-1377.	0.3	14
10	Structure and ionic conductivity of nitrated lithium disilicate (LiSiON) glasses. Materials Chemistry and Physics, 2018, 211, 438-444.	2.0	6
11	Broadband blue emission from ZnO amorphous nanodomains in zinc phosphate oxynitride glass. Optics Letters, 2018, 43, 5845.	1.7	7
12	Green foams for microwave absorbing applications: Synthesis and characterization. Materials Research Bulletin, 2017, 96, 100-106.	2.7	16
13	Crystallization pathways and some properties of lithium disilicate oxynitride glasses. Ceramics International, 2017, 43, 12348-12356.	2.3	15
14	Chemical tunability of europium emission in phosphate glasses. Journal of Luminescence, 2017, 183, 53-61.	1.5	20
15	Influence of the Structural Characteristics of Epitaxial TiO2 Thin Films on Their Photocatalytic Properties. Journal of Nanoscience and Nanotechnology, 2017, 17, 4326-4334.	0.9	3
16	Preparation of niobium based oxynitride nanosheets by exfoliation of Ruddlesden-Popper phase precursor. Solid State Sciences, 2016, 54, 17-21.	1.5	18
17	Characterisation of a new NZP material prepared from reactive sintering of a phosphate based glass. Journal of Commonwealth Law and Legal Education, 2016, 57, 206-212.	0.2	0
18	Structural investigation of fluorophosphate glasses by 19F, 31P MAS-NMR and IR spectroscopy. Journal of Non-Crystalline Solids, 2015, 414, 16-20.	1.5	21

#	Article	IF	CITATIONS
19	Waste-glass recycling: A step toward microwave applications. Materials Research Bulletin, 2015, 67, 261-265.	2.7	27
20	SrSnO3:N – Nitridation and evaluation of photocatalytic activity. Journal of Alloys and Compounds, 2015, 649, 491-494.	2.8	16
21	Excess entropy and thermal behavior of Cu- and Ti-doped bioactive glasses. Journal of Thermal Analysis and Calorimetry, 2014, 117, 579-588.	2.0	21
22	Effect of Eu substitution on the crystallographic and magnetic properties of the BiMn2O5 oxide obtained by urea combustion. Ceramics International, 2014, 40, 13643-13648.	2.3	3
23	Thermal and elastic characterization of Sb2O3–Na2O–ZnO glasses. Physica Scripta, 2013, T157, 014029.	1.2	9
24	Novel TaPO5â ^{~,} xN2x/3 oxynitrides. Journal of Alloys and Compounds, 2012, 513, 530-538.	2.8	1
25	Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials. Physica Status Solidi (B): Basic Research, 2012, 249, 2213-2221.	0.7	31
26	Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0,67Ba0,33Mn0,9Cr0,1O3 manganite. Journal of Magnetism and Magnetic Materials, 2012, 324, 2821-2828.	1.0	31
27	Glass reactive sintering as an alternative route for the synthesis of NZP glass–ceramics. Journal of Materials Science, 2012, 47, 486-492.	1.7	4
28	Microwave synthesis and properties of NaPO3–SnO–Nb2O5 glasses. Journal of Materials Science, 2012, 47, 4632-4639.	1.7	4
29	Glass formation in the Sb2O3–CdCl2–SrCl2 ternary system. Journal of Non-Crystalline Solids, 2011, 357, 2984-2988.	1.5	14
30	Synthesis and physical properties of glasses in the Sb2O3–PbCl2–MoO3 system. Journal of Non-Crystalline Solids, 2011, 357, 3572-3577.	1.5	17
31	Microwave synthesis and physical characterization of tin(II) phosphate glasses. Journal of Materials Science, 2010, 45, 2916-2920.	1.7	14
32	Characterization of NaPO3–SnO–WO3 glasses prepared by microwave heating. Journal of Materials Science, 2010, 45, 6505-6510.	1.7	8
33	Synthesis and characterization of tin containing molybdophosphate and tungstophosphate glasses. Journal of Non-Crystalline Solids, 2010, 356, 87-92.	1.5	18
34	Glass foams for environmental applications. Journal of Non-Crystalline Solids, 2010, 356, 2562-2568.	1.5	63
35	Semi-transparent barium borate surface crystallization for second harmonic generation. Journal of Non-Crystalline Solids, 2005, 351, 1372-1376.	1.5	8
36	Ceramic crucibles: a new alternative for melting of PbO–BiO1.5–GaO1.5 glasses. Journal of Non-Crystalline Solids, 2003, 319, 304-310.	1.5	23

#	Article	IF	CITATIONS
37	Evidence of higher-order mechanisms than dipole-dipole interaction inTm3+→Tm3+energy transfer in fluoroindogallate glasses. Physical Review B, 2002, 65, .	1.1	28
38	Photon avalanche upconversion in Tm3+-doped fluoroindogallate glasses. Journal of Physics Condensed Matter, 2002, 14, 5651-5663.	0.7	5
39	Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: analysis by impedance spectroscopy. Solid State Ionics, 2002, 146, 329-339.	1.3	166
40	Properties of glasses from fluoride to phosphate composition. Journal of Non-Crystalline Solids, 2001, 284, 55-60.	1.5	51
41	Thermal and optical properties of chalcohalide glass. Journal of Non-Crystalline Solids, 2001, 284, 203-209.	1.5	27
42	Thermal lens measurements of fluorescence quantum efficiency in Nd3+-doped fluoride glasses. Journal of Non-Crystalline Solids, 2001, 284, 255-260.	1.5	22
43	Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: Application to Nd3+-doped fluoride glass. Applied Physics Letters, 2001, 78, 3220-3222.	1.5	54
44	Optical properties of Sm3+ doped lead fluoroborate glasses. Journal of Physics and Chemistry of Solids, 2000, 61, 1535-1542.	1.9	166
45	High-pressure dependence of Sm3+ emission in PbO–PbF2–B2O3 glasses. Journal of Materials Science Letters, 2000, 19, 135-137.	0.5	27
46	Optical measurements of Nd3+/Yb3+ codoped fluoroindogallate glasses. Journal of Non-Crystalline Solids, 2000, 273, 233-238.	1.5	24
47	BiO1.5–BO1.5–GeO2 glass system and crystallization of Bi4Ge3O12 phase. Journal of Non-Crystalline Solids, 2000, 273, 94-99.	1.5	15
48	Electronic and thermal contributions to the non-linear refractive index of Nd3+ ion-doped fluoride glasses. Journal of Non-Crystalline Solids, 2000, 273, 257-265.	1.5	22
49	<title>Thermal-lens measurements of thermal diffusivity temperature dependence up to the glass transition in a fluoride glass</title> . , 1999, , .		Ο
50	Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry. Physical Review B, 1999, 60, 15173-15178.	1.1	80
51	Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications. Journal of Applied Physics, 1999, 85, 2502-2507.	1.1	80
52	Oxyfluoride glasses containing LiNbO3. Journal of Non-Crystalline Solids, 1999, 247, 35-38.	1.5	5
53	Time-resolved thermal lens measurements of thermo-optical properties of fluoride glasses. Journal of Non-Crystalline Solids, 1999, 256-257, 337-342.	1.5	20
54	Evaluation of the energy transfer rate for the Yb3+:Pr3+ system in lead fluoroindogallate glasses. Journal of Applied Physics, 1999, 86, 3144-3148.	1.1	37

#	Article	IF	CITATIONS
55	<title>Thermal-lens measurements of fluorescence quantum efficiency in Nd+3-doped fluoride
glasses</title> . , 1999, , .		0
56	Characteristics of PbO–BiO _{1.5} –GaO _{1.5} Glasses Melted in SnO ₂ Crucibles. Journal of the American Ceramic Society, 1998, 81, 705-708.	1.9	16
57	Time-resolved study of thermal and electronic nonlinearities in Nd+3 doped fluoride glasses. Electronics Letters, 1998, 34, 117.	0.5	16
58	Influence of barium substitution on the physical characteristics of ZBLA glass. Journal of Non-Crystalline Solids, 1997, 213-214, 353-357.	1.5	2
59	Room temperature synthesis of fluoride glasses. Journal of Non-Crystalline Solids, 1995, 184, 166-171.	1.5	3
60	Systematic substitutions in ZBLA and ZBLAN glasses. Journal of Non-Crystalline Solids, 1993, 161, 217-221.	1.5	26
61	Synthesis of high purity fluorides by wet chemistry. Journal of Non-Crystalline Solids, 1992, 140, 57-61.	1.5	4