Tal Oron-Gilad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6952000/publications.pdf Version: 2024-02-01

TAL ODON-CILAD

#	Article	IF	CITATIONS
1	Age, skill, and hazard perception in driving. Accident Analysis and Prevention, 2010, 42, 1240-1249.	5.7	298
2	Understanding and Resolving Failures in Human-Robot Interaction: Literature Review and Model Development. Frontiers in Psychology, 2018, 9, 861.	2.1	158
3	Alertness maintaining tasks (AMTs) while driving. Accident Analysis and Prevention, 2008, 40, 851-860.	5.7	109
4	Exploring the effects of driving experience on hazard awareness and risk perception via real-time hazard identification, hazard classification, and rating tasks. Accident Analysis and Prevention, 2013, 59, 548-565.	5.7	103
5	Age and skill differences in classifying hazardous traffic scenes. Transportation Research Part F: Traffic Psychology and Behaviour, 2009, 12, 277-287.	3.7	85
6	Are child-pedestrians able to identify hazardous traffic situations? Measuring their abilities in a virtual reality environment. Safety Science, 2015, 80, 33-40.	4.9	70
7	Drivers' perception of vulnerable road users: A hazard perception approach. Accident Analysis and Prevention, 2012, 44, 160-166.	5.7	66
8	Pedestrian distraction: The effects of road environment complexity and age on pedestrian's visual attention and crossing behavior. Journal of Safety Research, 2020, 72, 101-109.	3.6	64
9	The effects of an interactive cognitive task (ICT) in suppressing fatigue symptoms in driving. Transportation Research Part F: Traffic Psychology and Behaviour, 2009, 12, 21-28.	3.7	62
10	Cell phone conversations and child pedestrian's crossing behavior; a simulator study. Safety Science, 2016, 89, 36-44.	4.9	60
11	Towards understanding child-pedestrians' hazard perception abilities in a mixed reality dynamic environment. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 20, 90-107.	3.7	59
12	Aesthetics and usability of in-vehicle navigation displays. International Journal of Human Computer Studies, 2011, 69, 80-99.	5.6	57
13	Formation and Evaluation of Act and Anticipate Hazard Perception Training (AAHPT) Intervention for Young Novice Drivers. Traffic Injury Prevention, 2014, 15, 172-180.	1.4	54
14	Usage and perceived effectiveness of fatigue countermeasures for professional and nonprofessional drivers. Accident Analysis and Prevention, 2011, 43, 797-803.	5.7	51
15	Road Characteristics and Driver Fatigue: A Simulator Study. Traffic Injury Prevention, 2007, 8, 281-289.	1.4	48
16	Can traffic violations be traced to gender-role, sensation seeking, demographics and driving exposure?. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 43, 387-395.	3.7	47
17	Can child-pedestrians' hazard perception skills be enhanced?. Accident Analysis and Prevention, 2015, 83, 101-110	5.7	42
18	Vibrotactile Guidance Cues for Target Acquisition. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2007, 37, 993-1004.	2.9	41

#	Article	IF	CITATIONS
19	Toward Socially Aware Person-Following Robots. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 936-954.	3.8	41
20	Driver fatigue among military truck drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 2000, 3, 195-209.	3.7	38
21	The effect of environmental distractions on child pedestrian's crossing behavior. Safety Science, 2018, 106, 219-229.	4.9	37
22	The perception of pedestrians from the perspective of elderly experienced and experienced drivers. Accident Analysis and Prevention, 2012, 44, 48-55.	5.7	34
23	The effect of in-vehicle warning systems on speed compliance in work zones. Transportation Research Part F: Traffic Psychology and Behaviour, 2011, 14, 331-340.	3.7	33
24	Vibrotactile "On-Thigh―Alerting System in the Cockpit. Human Factors, 2011, 53, 118-131.	3.5	32
25	The Workload and Performance Relationship in the Real World: A Study of Police Officers in a Field Shooting Exercise. International Journal of Occupational Safety and Ergonomics, 2008, 14, 119-131.	1.9	28
26	Pedestrians' road crossing decisions and body parts' movements. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 53, 155-171.	3.7	28
27	The combination of short rest and energy drink consumption as fatigue countermeasures during a prolonged drive of professional truck drivers. Journal of Safety Research, 2014, 49, 39.e1-43.	3.6	24
28	In Touch With the Simon Effect *The first two authors contributed equally Experimental Psychology, 2014, 61, 165-179.	0.7	24
29	Understanding complex traffic road scenes: The case of child-pedestrians' hazard perception. Journal of Safety Research, 2020, 72, 111-126.	3.6	23
30	Directional tactile alerts for take-over requests in highly-automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65, 217-226.	3.7	22
31	Driving Speed of Young Novice and Experienced Drivers in Simulated Hazard Anticipation Scenes. Human Factors, 2015, 57, 311-328.	3.5	19
32	Police officers seat belt use while on duty. Transportation Research Part F: Traffic Psychology and Behaviour, 2005, 8, 1-18.	3.7	18
33	The Effects of Continuous Driving-Related Feedback on Drivers' Response to Automation Failures. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 1980-1984.	0.3	16
34	Robotic Displays for Dismounted Warfighters. Journal of Cognitive Engineering and Decision Making, 2011, 5, 29-54.	2.3	14
35	The influence of following angle on performance metrics of a human-following robot. , 2016, , .		14
36	Pedestrians' Understanding of a Fully Autonomous Vehicle's Intent to Stop: A Learning Effect Over Time. Frontiers in Psychology, 2020, 11, 585280.	2.1	14

#	Article	IF	CITATIONS
37	Supervising and Controlling Unmanned Systems: A Multi-Phase Study with Subject Matter Experts. Frontiers in Psychology, 2016, 7, 568.	2.1	13
38	ls More Information Better? How Dismounted Soldiers Use Video Feed From Unmanned Vehicles. Journal of Cognitive Engineering and Decision Making, 2013, 7, 26-48.	2.3	12
39	Where do older pedestrians glance before deciding to cross a simulated two-lane road? A pedestrian simulator paradigm. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 11-15.	0.3	12
40	Levels of Automation and Transparency: Interaction Design Considerations in Assistive Robots for Older Adults. IEEE Transactions on Human-Machine Systems, 2021, 51, 673-683.	3.5	12
41	The effect of system aesthetics on trust, cooperation, satisfaction and annoyance in an imperfect automated system. Work, 2012, 41, 258-265.	1.1	11
42	Provocation: Is the UAV Control Ratio the Right Question?. Ergonomics in Design, 2007, 15, 7-31.	0.7	10
43	Task-dependent processing of tables and graphs. Behaviour and Information Technology, 2009, 28, 293-307.	4.0	10
44	ATC-Monitoring When One Controller Operates Two Airports: Research for Remote Tower Centres. Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 76-80.	0.3	10
45	Evaluation of an "On-Thigh―Vibrotactile Collision Avoidance Alerting Component in a Simulated Flight Mission. IEEE Transactions on Human-Machine Systems, 2015, 45, 251-255.	3.5	10
46	Expect the Unexpected: Leveraging the Human-Robot Ecosystem to Handle Unexpected Robot Failures. Frontiers in Robotics and Al, 2021, 8, 656385.	3.2	10
47	User-centered feedback design in person-following robots for older adults. Paladyn, 2020, 11, 86-103.	2.7	10
48	Calibrating Adaptable Automation to Individuals. IEEE Transactions on Human-Machine Systems, 2018, 48, 691-701.	3.5	9
49	Designing Robots with Relationships in Mind: Suggesting Two Models of Human-socially Assistive Robot (SAR) Relationship. , 2021, , .		9
50	Vibrotactor-Belt on the Thigh – Directions in the Vertical Plane. Lecture Notes in Computer Science, 2010, , 359-364.	1.3	9
51	Comparing Laboratory User Studies and Video-Enhanced Web Surveys for Eliciting User Gestures in Human-Robot Interactions. , 2020, , .		9
52	Human-Automation Challenges for the Control of Unmanned Aerial Systems. Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 424-428.	0.3	8
53	Perceptions of electronic navigation displays. Behaviour and Information Technology, 2013, 32, 800-823.	4.0	8
54	In-Vehicle Stopping Decision Advisory System for Drivers Approaching a Traffic Signal. Transportation Research Record, 2013, 2365, 22-30.	1.9	8

#	Article	IF	CITATIONS
55	Evaluation of tactile cues for simulated patients' status under high and low workload. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 658-662.	0.3	8
56	Levels of Automation for a Mobile Robot Teleoperated by a Caregiver. ACM Transactions on Human-Robot Interaction, 2022, 11, 1-21.	4.1	8
57	'Castling rays' a decision support tool for UAV-switching tasks. , 2010, , .		7
58	Towards Understanding the Influence of Environmental Distractors on Pedestrian Behavior. Procedia Manufacturing, 2015, 3, 2690-2697.	1.9	7
59	From Ergonomics to Hedonomics: Trends in Human Factors and Technology—The Role of Hedonomics Revisited. , 2017, , 185-194.		7
60	The impact of auditory continual feedback on take-overs in Level 3 automated vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 75, 145-159.	3.7	7
61	Subjective Workload Assessment Technique (SWAT) in Real Time: Affordable Methodology to Continuously Assess Human Operators' Workload. , 2020, , .		7
62	Age, Skill and Hazard Perception in Driving. , 2007, , .		7
63	Alertness Maintaining Tasks While Driving. Proceedings of the Human Factors and Ergonomics Society, 2002, 46, 1839-1843.	0.3	6
64	3. Remotely Operated Vehicles (ROVs) from the Top-Down and the Bottom-Upâ~†. Advances in Human Performance and Cognitive Engineering Research, 2006, , 37-47.	0.5	6
65	Close Target Reconnaissance. Journal of Cognitive Engineering and Decision Making, 2017, 11, 63-80.	2.3	6
66	Combining cognitive work analysis and empirical evaluations to understand map use by operators of small carry-on unmanned aerial systems. Applied Ergonomics, 2021, 90, 103218.	3.1	6
67	Road Environment and Driver Fatigue. , 2005, , .		6
68	Improving the Interaction of Older Adults with a Socially Assistive Table Setting Robot. Lecture Notes in Computer Science, 2019, , 568-577.	1.3	6
69	The effect of display size on performance of operational tasks with UAVs. Proceedings of the Human Factors and Ergonomics Society, 2007, 51, 1091-1095.	0.3	5
70	Thermoelectric Tactile Display Based on the Thermal Grill Illusion. Lecture Notes in Computer Science, 2008, , 343-348.	1.3	5
71	The Effect of Hazard Perception Training on Traffic-Scene Movies Categorization. Proceedings of the Human Factors and Ergonomics Society, 2010, 54, 2101-2105.	0.3	5
72	Switch and Deliver: Display layouts for MOMV (Multiple Operator Multiple Video feed) environments. , 2011, , .		5

#	Article	IF	CITATIONS
73	Tools and Techniques for MOMU (Multiple Operator Multiple UAV) Environments; an Operational Perspective. Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 86-90.	0.3	5
74	Tactile Interfaces for Dismounted Soldiers. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 421-425.	0.3	5
75	Operator Workload Reduced in Unmanned Aerial Vehicles: Making Command and Control (C2) Maps More Useful. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 1057-1061.	0.3	5
76	Towards the Development of a Display Filter Algorithm for Command and Control (C2) Maps for Operators of Unmanned Aerial Systems. , 2019, , .		5
77	Touch-and-Go: Interior Tactile Communication in Armored Fighting Vehicles. Ergonomics in Design, 2020, 28, 16-21.	0.7	5
78	Rapid Interpretation of Temporal–Spatial Unmanned Aerial Vehicle (UAV) Operational Data – RITSUD: Aiding UAV Operators With Visualizations of Patterns-of-Life Activities. Journal of Cognitive Engineering and Decision Making, 2021, 15, 135-154.	2.3	5
79	Impacting the Perception of Socially Assistive Robots- Evaluating the effect of Visual Qualities among Children. , 2021, , .		5
80	An Artificial Intelligence Algorithm to Automate Situation Management for Operators of Unmanned Aerial Vehicles. , 2020, , .		4
81	Comply with Me: Using Design Manipulations to Affect Human–Robot Interaction in a COVID-19 Officer Robot Use Case. Multimodal Technologies and Interaction, 2021, 5, 71.	2.5	4
82	Workload and Performance: A Field Evaluation in a Police Shooting Range. Proceedings of the Human Factors and Ergonomics Society, 2004, 48, 1953-1957.	0.3	3
83	Friend/Foe Identification and Shooting Performance: Effects of Prior Task Loading and Time Pressure. Proceedings of the Human Factors and Ergonomics Society, 2007, 51, 156-160.	0.3	3
84	Display type effects in military operational tasks using UAV video images. Proceedings of the Human Factors and Ergonomics Society, 2009, 53, 71-75.	0.3	3
85	From ergonomics to hedonomics: trends in human factors and technology. , 2009, , 131-147.		3
86	A comparison of "on-thigh" vibrotactile, combined visual-vibrotactile, and visual-only alerting systems for the cockpit under visually demanding conditions. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 1644-1648.	0.3	3
87	Is more information better for dismounted soldiers? Display-layout considerations of multiple video feed from unmanned vehicles. Proceedings of the Human Factors and Ergonomics Society, 2014, 58, 345-349.	0.3	3
88	Multimodal communication for guiding a person following robot. , 2017, , .		3
89	Elaborations of the Multiple-Resource Theory of Attention. , 2006, , 45-56.		3
90	Act and anticipate hazard perception training for young-inexperienced drivers. Advances in Human Factors and Ergonomics Series, 2010, , 134-143.	0.2	3

#	Article	IF	CITATIONS
91	Facilitating the Work of Unmanned Aerial Vehicle Operators Using Artificial Intelligence: An Intelligent Filter for Command-and-Control Maps to Reduce Cognitive Workload. Human Factors, 2023, 65, 1345-1360.	3.5	3
92	Monitoring dynamic processes with alphanumeric and graphic displays. Theoretical Issues in Ergonomics Science, 2001, 2, 368-389.	1.8	2
93	Stress Effects on Soldier Performance. Proceedings of the Human Factors and Ergonomics Society, 2004, 48, 1271-1274.	0.3	2
94	The Role of Hedonomics in the Future of Industry, Service, and Product Design: Panel Overview. Proceedings of the Human Factors and Ergonomics Society, 2005, 49, 1701-1704.	0.3	2
95	Thermoelectric tactile display based on the thermal grill illusion. , 2007, , .		2
96	The Effect of In-Vehicle Warning Systems on Speed Compliance in Work Zones. Proceedings of the Human Factors and Ergonomics Society, 2010, 54, 2023-2027.	0.3	2
97	Single versus Dual Video Feed Displays for Dismounted Soldiers: Performance and Attention Allocation (eye tracking). Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 2064-2068.	0.3	2
98	Coding warnings without interfering with dismounted soldiers' missions. Applied Ergonomics, 2014, 45, 1343-1352.	3.1	2
99	Evaluation of the attention network test using vibrotactile stimulations. Behavior Research Methods, 2015, 47, 395-408.	4.0	2
100	Towards Enhancement of Unmanned Aerial Vehicle (UAV) Operators' Situation Awareness. , 2020, , .		2
101	Using Customers' Online Reviews to Identify and Classify Human Robot Interaction Failures in Domestic Robots. , 2020, , .		2
102	Display type effects in military operational tasks using UAV video images. Proceedings of the Human Factors and Ergonomics Society, 2009, 53, 71-75.	0.3	2
103	Evaluation of Threat by Police Officers: Initial Findings. Proceedings of the Human Factors and Ergonomics Society, 2005, 49, 846-849.	0.3	1
104	Display Type Effects in Military Operational Tasks Using UAV Video Images: Comparison between Two Types of UAV Feeds Mini and MALE (Medium-Altitude-Long-Endurance) UAVs. Proceedings of the Human Factors and Ergonomics Society, 2010, 54, 85-89.	0.3	1
105	The use of a homogeneity measure to identify hazard perception abilities of novices and experienced drivers in a driving simulator. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 2266-2270.	0.3	1
106	Interfaces for dismounted soldiers. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 145-149.	0.3	1
107	859â€Child pedestrians' perceived risk of the crossing place. Injury Prevention, 2016, 22, A306.2-A306.	2.4	1
108	Is staying out of bomb-shelters a human-automation interaction issue?. Technology in Society, 2016, 47, 25-30.	9.4	1

#	Article	IF	CITATIONS
109	Crossing the road while playing a mobile game app – effects of age, environmental load and game complexity. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 880-880.	0.3	1
110	Can you feel it? What does it mean? Notifications for Operators of Unmanned Ground Vehicles (UGVs) During Operational Missions. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 817-821.	0.3	1
111	Identifying Sources of Discomfort in Various Road Events While Riding Automated Vehicles. , 2020, , .		1
112	Body Language for Personal Robot Arm Assistant. International Journal of Social Robotics, 2022, 14, 15-37.	4.6	1
113	Use of Graphic Imagery as a Mean of Communication Between Operators and Unmanned Systems in C3Fire Tasks. Lecture Notes in Computer Science, 2017, , 362-381.	1.3	1
114	Act and Anticipate Hazard Perception Training for Young-Inexperienced Drivers. Advances in Human Factors and Ergonomics Series, 2010, , 134-143.	0.2	1
115	A Communication Interface for a Dismounted Ground Commander and an Intelligent Autonomous Unmanned Aerial Systems (IA-UAS) – A Feasibility Study. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 218-223.	0.3	1
116	Usability Testing for the Operation of a Mobile Robotic Telepresence System by Older Adults. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 1191-1195.	0.3	1
117	The Role of bi-Directional Graphic Communication in Human-Unmanned Operations. International Journal of Human-Computer Interaction, 2022, 38, 1926-1943.	4.8	1
118	Detecting Changes in Dynamic Functions with Tables and Graphs. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 3-435-3-438.	0.3	0
119	The Effects of Warning Presentation and Retention under Varying Levels of Stress. Proceedings of the Human Factors and Ergonomics Society, 2004, 48, 2027-2030.	0.3	0
120	Operators' Time Perception Under Stress. Proceedings of the Human Factors and Ergonomics Society, 2007, 51, 151-155.	0.3	0
121	The Development of the Driving Skill Assessment Tool (DSAT). Proceedings of the Human Factors and Ergonomics Society, 2008, 52, 1488-1492.	0.3	0
122	Panel Discussion: Future Challenges for the Effective Utilization of Robotic Assets in Military Environments. Proceedings of the Human Factors and Ergonomics Society, 2010, 54, 2182-2184.	0.3	0
123	Limitations and Advantages of Autonomy in Controlling Multiple Systems: an International View. Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 2010-2014.	0.3	0
124	Display type effects in military operational tasks using Unmanned Vehicle (UV) video images: Comparison between color and B/W video feeds. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 1777-1781.	0.3	0
125	What do we think we are doing: principles of coupled self-regulation in human-robot interaction (HRI). Frontiers in Psychology, 2015, 6, 929.	2.1	0

Hazard Awareness in Driving: Measurement and Training. , 0, , 592-612.

#	Article	IF	CITATIONS
127	Postures of a robot arm-window to robot intentions?. , 2016, , .		0
128	550â€Drinking and driving: consumption of alcohol mixed energy drinks compared to alcohol in a simulator. Injury Prevention, 2016, 22, A198.2-A198.	2.4	0
129	Who's with me? A Tactile Interface for Identification of Separation of Squad Members from their Team. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 520-521.	0.3	0
130	Task Influence on Perceptions of a Person-Following Robot and Following-Angle Preferences. , 2019, , .		0
131	Human Factors Issues in Motorcycle Collisions. , 2004, , 18-1-18-20.		0
132	Pedestrians' understanding of fully autonomous vehicles (FAV) intent to stop. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 1931-1932.	0.3	0
133	Identification Rate of Simple and Complex Tactile Alerts in MUM-T Setup. Lecture Notes in Computer Science, 2020, , 453-461.	1.3	0