Julie Brind'Amour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6951927/publications.pdf

Version: 2024-02-01

21 papers 1,561 citations

567281 15 h-index 19 g-index

24 all docs

24 docs citations

times ranked

24

2617 citing authors

#	Article	IF	CITATIONS
1	Transcription shapes genome-wide histone acetylation patterns. Nature Communications, 2021, 12, 210.	12.8	84
2	Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo. Nature Communications, 2020, 11, 5417.	12.8	12
3	Vertebrate diapause preserves organisms long term through Polycomb complex members. Science, 2020, 367, 870-874.	12.6	79
4	Setting the chromatin stage in oocytes. Nature Cell Biology, 2020, 22, 355-357.	10.3	1
5	SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nature Genetics, 2019, 51, 844-856.	21.4	207
6	Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Reports, 2019, 27, 282-293.e4.	6.4	62
7	Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nature Communications, 2019, 10, 5674.	12.8	39
8	Reality check for transposon enhancers. ELife, 2019, 8, .	6.0	3
9	LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nature Communications, 2018, 9, 3331.	12.8	65
10	Histone H3K4 and H3K36 Methylation Independently Recruit the NuA3 Histone Acetyltransferase in <i>Saccharomyces cerevisiae </i> Cenetics, 2017, 205, 1113-1123.	2.9	23
11	Activation of Endogenous Retroviruses in Dnmt1 â^'/â^' ESCs Involves Disruption of SETDB1-Mediated Repression by NP95 Binding to Hemimethylated DNA. Cell Stem Cell, 2016, 19, 81-94.	11.1	77
12	An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nature Communications, 2015, 6, 6033.	12.8	322
13	<i>Setdb1</i> is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes and Development, 2014, 28, 2041-2055.	5.9	228
14	Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1658-1663.	7.1	148
15	RTEL1 contributes to DNA replication and repair and telomere maintenance. Molecular Biology of the Cell, 2012, 23, 2782-2792.	2.1	100
16	Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18505-18510.	7.1	52
17	Epigenetic differences between sister chromatids?. Annals of the New York Academy of Sciences, 2012, 1266, 1-6.	3.8	18
18	Approaches to Detect PARP-1 Activation In Vivo, In Situ, and In Vitro. Methods in Molecular Biology, 2011, 780, 3-34.	0.9	15

#	Article	IF	CITATIONS
19	Analysis of repetitive DNA in chromosomes by flow cytometry. Nature Methods, 2011, 8, 484-486.	19.0	23
20	Peptide nucleic acid (PNA) fluorescent in situ hybridization (FISH) on chromosomes in suspension for analysis of repetitive DNA by flow cytometry. Protocol Exchange, 0, , .	0.3	0
21	Ultra-low-input native ChIP-seq for rare cell populations. Protocol Exchange, 0, , .	0.3	0