
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/695190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NiCo ₂ S ₄ Nanosheets Grown on Nitrogenâ€Doped Carbon Foams as an Advanced Electrode for Supercapacitors. Advanced Energy Materials, 2015, 5, 1400977.	10.2	729
2	Mesoporous NiCo ₂ O ₄ Nanowire Arrays Grown on Carbon Textiles as Binderâ€Free Flexible Electrodes for Energy Storage. Advanced Functional Materials, 2014, 24, 2630-2637.	7.8	718
3	Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chemistry, 2015, 17, 1668-1674.	4.6	572
4	Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nature Materials, 2021, 20, 76-83.	13.3	432
5	Flexible Sodiumâ€lon Pseudocapacitors Based on 3D Na ₂ Ti ₃ O ₇ Nanosheet Arrays/Carbon Textiles Anodes. Advanced Functional Materials, 2016, 26, 3703-3710.	7.8	270
6	Self-Assembled Nb ₂ O ₅ Nanosheets for High Energy–High Power Sodium Ion Capacitors. Chemistry of Materials, 2016, 28, 5753-5760.	3.2	254
7	An advanced high-energy sodium ion full battery based on nanostructured Na ₂ Ti ₃ O ₇ /VOPO ₄ layered materials. Energy and Environmental Science, 2016, 9, 3399-3405.	15.6	247
8	Design and Tailoring of a Three-Dimensional TiO ₂ –Graphene–Carbon Nanotube Nanocomposite for Fast Lithium Storage. Journal of Physical Chemistry Letters, 2011, 2, 3096-3101.	2.1	205
9	General Strategy for Designing Core–Shell Nanostructured Materials for High-Power Lithium Ion Batteries. Nano Letters, 2012, 12, 5673-5678.	4.5	193
10	Pseudocapacitive behaviours of Na ₂ Ti ₃ O ₇ @CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 2015, 3, 21277-21283.	5.2	187
11	Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 7270.	5.2	177
12	Achieving High-Energy–High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor. Nano Letters, 2016, 16, 5938-5943.	4.5	171
13	High rate capability and superior cycle stability of a flower-like Sb ₂ S ₃ anode for high-capacity sodium ion batteries. Nanoscale, 2015, 7, 3309-3315.	2.8	147
14	Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Materials, 2019, 22, 228-234.	9.5	143
15	An Allâ€Stretchableâ€Component Sodiumâ€Ion Full Battery. Advanced Materials, 2017, 29, 1700898.	11.1	141
16	TiNb ₂ O ₇ nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries. Nanoscale, 2015, 7, 619-624.	2.8	129
17	Chemically Integrated Inorganicâ€Graphene Twoâ€Dimensional Hybrid Materials for Flexible Energy Storage Devices. Small, 2016, 12, 6183-6199.	5.2	126
18	Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: Superior anode materials for rechargeable lithium ion batteries. Journal of Power Sources, 2013, 221, 122-127.	4.0	100

#	Article	IF	CITATIONS
19	Flexible sodium-ion based energy storage devices: Recent progress and challenges. Energy Storage Materials, 2020, 26, 83-104.	9.5	100
20	Mesoporous NaTi ₂ (PO ₄) ₃ /CMK-3 nanohybrid as anode for long-life Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20659-20666.	5.2	99
21	Three-dimensionally ordered porous TiNb ₂ O ₇ nanotubes: a superior anode material for next generation hybrid supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16785-16790.	5.2	96
22	Improved Electrochemical Performance Based on Nanostructured SnS2@CoS2–rGO Composite Anode for Sodium-Ion Batteries. Nano-Micro Letters, 2018, 10, 46.	14.4	96
23	Designing two-dimensional WS2 layered cathode for high-performance aluminum-ion batteries: From micro-assemblies to insertion mechanism. Nano Today, 2020, 32, 100870.	6.2	83
24	Novel template-free solvothermal synthesis of mesoporous Li4Ti5O12-C microspheres for high power lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 14414.	6.7	81
25	Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2006629.	11.1	80
26	Ultralong SrLi2Ti6O14 nanowires composed of single-crystalline nanoparticles: Promising candidates for high-power lithium ions batteries. Nano Energy, 2015, 13, 18-27.	8.2	79
27	Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries. Journal of Alloys and Compounds, 2013, 572, 37-42.	2.8	77
28	Constructing Three-Dimensional Porous Carbon Framework Embedded with FeSe ₂ Nanoparticles as an Anode Material for Rechargeable Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38862-38871.	4.0	69
29	Reacquainting the Electrochemical Conversion Mechanism of FeS ₂ Sodium-Ion Batteries by Operando Magnetometry. Journal of the American Chemical Society, 2021, 143, 12800-12808.	6.6	69
30	3D Ordered Porous Hybrid of ZnSe/ <i>N</i> â€doped Carbon with Anomalously High Na ⁺ Mobility and Ultrathin Solid Electrolyte Interphase for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2106194.	7.8	66
31	Trivalent Ti self-doped Li 4 Ti 5 O 12 : A high performance anode material for lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2015, 757, 1-7.	1.9	63
32	A facile one-pot synthesis of TiO2/nitrogen-doped reduced graphene oxide nanocomposite as anode materials for high-rate lithium-ion batteries. Electrochimica Acta, 2014, 133, 209-216.	2.6	59
33	PEDOT coated Li4Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties. Electrochimica Acta, 2014, 129, 283-289.	2.6	57
34	Porous NiCo ₂ O ₄ nanotubes as a noble-metal-free effective bifunctional catalyst for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 24309-24314.	5.2	57
35	Nonaqueous Aluminum Ion Batteries: Recent Progress and Prospects. , 2020, 2, 887-904.		57
36	Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na ₃ V ₂ O ₂ (PO ₄) ₂ F@PEDOT core–shell nanorods. Journal of Materials Chemistry A, 2019, 7, 1030-1037.	5.2	56

#	Article	IF	CITATIONS
37	Nanosized MoSe ₂ @Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions. ACS Applied Materials & Interfaces, 2019, 11, 44333-44341.	4.0	56
38	Facile hydrothermal synthesis of single crystalline TiOF2 nanocubes and their phase transitions to TiO2 hollow nanocages as anode materials for lithium-ion battery. Electrochimica Acta, 2012, 62, 408-415.	2.6	54
39	Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe ₂ cathode for aluminium-ion batteries by <i>in situ</i> magnetometry. Energy and Environmental Science, 2022, 15, 311-319.	15.6	53
40	Three-Dimensional Hierarchical Flowerlike FeP Wrapped with N-Doped Carbon Possessing Improved Li ⁺ Diffusion Kinetics and Cyclability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 39961-39969.	4.0	52
41	Construction of the POMOF@Polypyrrole Composite with Enhanced Ion Diffusion and Capacitive Contribution for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 6265-6275.	4.0	52
42	Fast potassium storage in porous CoV2O6 nanosphere@graphene oxide towards high-performance potassium-ion capacitors. Energy Storage Materials, 2021, 40, 250-258.	9.5	46
43	Self-Supported Amorphous SnO ₂ /TiO ₂ Nanocomposite Films with Improved Electrochemical Performance for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3072-A3078.	1.3	45
44	Enhanced Lithiumâ€Storage Performance from Threeâ€Dimensional MoS ₂ Nanosheets/Carbon Nanotube Paper. ChemElectroChem, 2014, 1, 1118-1125.	1.7	43
45	SnO2 nanoflower arrays on an amorphous buffer layer as binder-free electrodes for flexible lithium-ion batteries. Applied Surface Science, 2020, 527, 146910.	3.1	42
46	Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery. Journal of Electroanalytical Chemistry, 2018, 810, 27-33.	1.9	41
47	Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. Journal of Alloys and Compounds, 2014, 587, 171-176.	2.8	39
48	Electrospun Hierarchical Li ₄ Ti _{4.95} Nb _{0.05} O ₁₂ /Carbon Composite Nanofibers for High Rate Lithium Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A426-A430.	1.3	37
49	Nitrogenated Urchinâ€like Nb ₂ O ₅ Microspheres with Extraordinary Pseudocapacitive Properties for Lithiumâ€lon Capacitors. ChemElectroChem, 2018, 5, 1516-1524.	1.7	36
50	3D Heterogeneous Co ₃ O ₄ @Co ₃ S ₄ Nanoarrays Grown on Ni Foam as a Binderâ€Free Electrode for Lithiumâ€ion Batteries. ChemElectroChem, 2018, 5, 309-315.	1.7	35
51	Nb ₂ O ₅ nanoparticles encapsulated in ordered mesoporous carbon matrix as advanced anode materials for Li ion capacitors. RSC Advances, 2016, 6, 71338-71344.	1.7	34
52	Two-dimensionally porous cobalt sulfide nanosheets as a high-performance cathode for aluminum-ion batteries. Journal of Power Sources, 2019, 440, 227147.	4.0	33
53	Design of a Nitrogenâ€Doped, Carbonâ€Coated Li ₄ Ti ₅ O ₁₂ Nanocomposite with a Core–Shell Structure and Its Application for Highâ€Rate Lithiumâ€Ion Batteries. ChemPlusChem, 2014, 79, 128-133.	1.3	32
54	Antimony Selenide Nanorods Decorated on Reduced Graphene Oxide with Excellent Electrochemical Properties for Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2922-A2929.	1.3	30

#	Article	IF	CITATIONS
55	Evidence for dual anions co-insertion in a transition metal chalcogenide cathode material NiSe2 for high-performance rechargeable aluminum-ion batteries. Energy Storage Materials, 2022, 47, 336-344.	9.5	29
56	Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties. Nanoscale, 2013, 5, 11087.	2.8	28
57	Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Research, 2017, 10, 4448-4456.	5.8	27
58	Layered Fe2(MoO4)3 assemblies with pseudocapacitive properties as advanced materials for high-performance sodium-ion capacitors. Chemical Engineering Journal, 2022, 427, 131481.	6.6	26
59	Dendrite-structured FeF2 consisting of closely linked nanoparticles as cathode for high-performance lithium-ion capacitors. Journal of Energy Chemistry, 2021, 55, 517-523.	7.1	25
60	Design of nanoconfined MWNTs@NaTi2(PO4)3 coaxial cables with superior rate capability and long-cycle life for Na-ion batteries. Applied Materials Today, 2016, 4, 54-61.	2.3	24
61	A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 60.	3.1	23
62	Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 2022, 67, 1145-1153.	4.3	23
63	Stabilized titanium nitride nanowire supported silicon core–shell nanorods as high capacity lithium-ion anodes. Journal of Materials Chemistry A, 2015, 3, 12476-12481.	5.2	19
64	Unraveling the Evolution of Transition Metals during Li Alloying–Dealloying by In-Operando Magnetometry. Chemistry of Materials, 2022, 34, 5852-5859.	3.2	19
65	Li-ionic control of magnetism through spin capacitance and conversion. Matter, 2021, 4, 3605-3620.	5.0	18
66	Fe, N co-doped amorphous carbon as efficient electrode materials for fast and stable Na/K-storage. Electrochimica Acta, 2021, 396, 139265.	2.6	11
67	Mechanistic understanding of the charge storage processes in FeF ₂ aggregates assembled with cylindrical nanoparticles as a cathode material for lithiumâ€ion batteries by in situ magnetometry. , 2022, 4, 1011-1020.		11
68	Metal Oxides: Mesoporous NiCo ₂ O ₄ Nanowire Arrays Grown on Carbon Textiles as Binderâ€Free Flexible Electrodes for Energy Storage (Adv. Funct. Mater. 18/2014). Advanced Functional Materials, 2014, 24, 2736-2736.	7.8	10
69	Interfacial Engineering of Self-Supported SnO2Nanorod Arrays as Anode for Flexible Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 120515.	1.3	9
70	Architecting Hierarchical WO3 Agglomerates Assembled With Straight and Parallel Aligned Nanoribbons Enabling High Capacity and Robust Stability of Lithium Storage. Frontiers in Chemistry, 2021, 9, 834418.	1.8	9
71	Designing Uniformly Layered FeTiO3 Assemblies Consisting of Fine Nanoparticles Enabling High-Performance Quasi-Solid-State Sodium-Ion Capacitors. Frontiers in Chemistry, 2020, 8, 371.	1.8	8
72	Transition metal catalysis in lithium-ion batteries studied by operando magnetometry. Chinese Journal of Catalysis, 2022, 43, 158-166.	6.9	8

#	Article	IF	CITATIONS
73	Lithiumâ€ion Batteries: Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€ion Batteries (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170093.	11.1	4
74	Electrical control of ON–OFF magnetism and exchange bias via reversible ionic motion. Applied Physics Letters, 2022, 120, 082405.	1.5	3
75	Preparation and Electrochemical Lithium Storage of Titanium Dioxide@Multi-walled Carbon Nanotubes(TiO2@MWNTs) Nanocomposites. Acta Chimica Sinica, 2012, 70, 15.	0.5	2
	3D Ordered Porous Hybrid of ZnSe/ <i>N</i> â€doped Carbon with Anomalously High Na ⁺		

3D Ordered Porous Hybrid of ZnSe/<i>N</i>â€doped Carbon with Anomalously High Na⁺ Mobility and Ultrathin Solid Electrolyte Interphase for Sodiumâ€ion Batteries (Adv. Funct. Mater.) Tj ETQq0 0 0 rgB**7.**¢Overloc № 10 Tf 50

77	Co ₃ S ₄ Nanosheets on Carbon Cloth as Free-Standing Anode with Improved Pseudocapacitive Storage for High-Performance Li-Ion Batteries. Nano, 2021, 16, 2150007.	0.5	1
78	HIERARCHICAL Li4Ti5O12 MICROSPHERES AS A HIGH POWER ANODE MATERIAL FOR LITHIUM ION BATTERIES. Journal of Molecular and Engineering Materials, 2013, 01, 1340013.	0.9	0